Barlacchi Gianni, Perentis Christos, Mehrotra Abhinav, Musolesi Mirco, Lepri Bruno
1University of Trento, Trento, Italy.
2SKIL, Telecom Italia, Trento, Italy.
EPJ Data Sci. 2017;6(1):27. doi: 10.1140/epjds/s13688-017-0124-6. Epub 2017 Oct 24.
Understanding and modeling the mobility of individuals is of paramount importance for public health. In particular, mobility characterization is key to predict the spatial and temporal diffusion of human-transmitted infections. However, the mobility behavior of a person can also reveal relevant information about her/his health conditions. In this paper, we study the impact of people mobility behaviors for predicting the future presence of flu-like and cold symptoms (i.e. , , , , , , , and ). To this end, we use the mobility traces from mobile phones and the daily self-reported flu-like and cold symptoms of 29 individuals from February 20, 2013 to March 21, 2013. First of all, we demonstrate that daily symptoms of an individual can be predicted by using his/her mobility trace characteristics (e.g. total displacement, radius of gyration, number of unique visited places, etc.). Then, we present and validate models that are able to successfully predict the future presence of symptoms by analyzing the mobility patterns of our individuals. The proposed methodology could have a societal impact opening the way to customized mobile phone applications, which may detect and suggest to the user specific actions in order to prevent disease spreading and minimize the risk of contagion.
了解和模拟个体的流动性对公共卫生至关重要。特别是,流动性特征是预测人际传播感染的时空扩散的关键。然而,一个人的流动行为也可以揭示有关其健康状况的相关信息。在本文中,我们研究人们的流动行为对预测未来流感样症状和感冒症状(即 , , , , , , 和 )出现的影响。为此,我们使用了来自手机的移动轨迹以及2013年2月20日至2013年3月21日期间29个人每天自我报告的流感样症状和感冒症状。首先,我们证明可以通过使用个体的移动轨迹特征(例如总位移、回转半径、独特访问地点的数量等)来预测其日常症状。然后,我们提出并验证了能够通过分析我们研究对象的流动模式成功预测未来症状出现的模型。所提出的方法可能会产生社会影响,为定制手机应用程序开辟道路,这些应用程序可以检测并向用户建议具体行动,以防止疾病传播并将传染风险降至最低。