用间充质干细胞衍生的细胞外囊泡修饰的细胞外基质模拟纳米纤维支架以改善血管生成

Extracellular Matrix Mimicking Nanofibrous Scaffolds Modified With Mesenchymal Stem Cell-Derived Extracellular Vesicles for Improved Vascularization.

作者信息

Hao Dake, Swindell Hila Shimshi, Ramasubramanian Lalithasri, Liu Ruiwu, Lam Kit S, Farmer Diana L, Wang Aijun

机构信息

Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States.

Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States.

出版信息

Front Bioeng Biotechnol. 2020 Jun 25;8:633. doi: 10.3389/fbioe.2020.00633. eCollection 2020.

Abstract

The network structure and biological components of natural extracellular matrix (ECM) are indispensable for promoting tissue regeneration. Electrospun nanofibrous scaffolds have been widely used in regenerative medicine to provide structural support for cell growth and tissue regeneration due to their natural ECM mimicking architecture, however, they lack biological functions. Extracellular vesicles (EVs) are potent vehicles of intercellular communication due to their ability to transfer RNAs, proteins, and lipids, thereby mediating significant biological functions in different biological systems. Matrix-bound nanovesicles (MBVs) are identified as an integral and functional component of ECM bioscaffolds mediating significant regenerative functions. Therefore, to engineer EVs modified electrospun scaffolds, mimicking the structure of the natural EV-ECM complex and the physiological interactions between the ECM and EVs, will be attractive and promising in tissue regeneration. Previously, using one-bead one-compound (OBOC) combinatorial technology, we identified LLP2A, an integrin α4β1 ligand, which had a strong binding to human placenta-derived mesenchymal stem cells (PMSCs). In this study, we isolated PMSCs derived EVs (PMSC-EVs) and demonstrated they expressed integrin α4β1 and could improve endothelial cell (EC) migration and vascular sprouting in an rat aortic ring assay. LLP2A treated culture surface significantly improved PMSC-EV attachment, and the PMSC-EV treated culture surface significantly enhanced the expression of angiogenic genes and suppressed apoptotic activity. We then developed an approach to enable "Click chemistry" to immobilize LLP2A onto the surface of electrospun scaffolds as a linker to immobilize PMSC-EVs onto the scaffold. The PMSC-EV modified electrospun scaffolds significantly promoted EC survival and angiogenic gene expression, such as KDR and TIE2, and suppressed the expression of apoptotic markers, such as caspase 9 and caspase 3. Thus, PMSC-EVs hold promising potential to functionalize biomaterial constructs and improve the vascularization and regenerative potential. The EVs modified biomaterial scaffolds can be widely used for different tissue engineering applications.

摘要

天然细胞外基质(ECM)的网络结构和生物成分对于促进组织再生不可或缺。电纺纳米纤维支架由于其模仿天然ECM的结构,已在再生医学中广泛用于为细胞生长和组织再生提供结构支持,然而,它们缺乏生物学功能。细胞外囊泡(EVs)因其能够转移RNA、蛋白质和脂质,从而在不同生物系统中介导重要生物学功能,是细胞间通讯的有效载体。基质结合纳米囊泡(MBVs)被认为是ECM生物支架的一个不可或缺的功能成分,介导重要的再生功能。因此,设计模仿天然EV-ECM复合物结构以及ECM与EVs之间生理相互作用的EVs修饰的电纺支架,在组织再生方面将具有吸引力和前景。此前,我们使用单珠单化合物(OBOC)组合技术鉴定出LLP2A,一种整合素α4β1配体,它与人胎盘来源的间充质干细胞(PMSCs)有很强的结合力。在本研究中,我们分离了PMSCs来源的EVs(PMSC-EVs),并证明它们表达整合素α4β1,且在大鼠主动脉环实验中能改善内皮细胞(EC)迁移和血管生成。LLP2A处理的培养表面显著改善了PMSC-EV的附着,而PMSC-EV处理的培养表面显著增强了血管生成基因的表达并抑制了凋亡活性。然后,我们开发了一种方法,使“点击化学”能够将LLP2A固定在电纺支架表面,作为将PMSC-EVs固定在支架上的连接物。PMSC-EV修饰的电纺支架显著促进了EC存活和血管生成基因表达,如KDR和TIE2,并抑制了凋亡标志物的表达,如caspase 9和caspase 3。因此,PMSC-EVs在使生物材料构建体功能化以及改善血管化和再生潜力方面具有广阔前景。EVs修饰的生物材料支架可广泛用于不同的组织工程应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/626b/7329993/ecfc094dffce/fbioe-08-00633-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索