Davis M G, Calvo J M
J Bacteriol. 1977 Feb;129(2):1078-90. doi: 10.1128/jb.129.2.1078-1090.1977.
In the Escherichia coli lysogen HfrH73 described by Shimada et al. (1973), none of the enzymes coded for by the leucine operon is synthesized due to an insertion of phage lambda into cistron leuA. The orientation of lambda in the chromosome is ara leuDCB lambda JAN leuA. After heat induction of the lysogen, plaque-forming transducing phages of two types are formed at low frequency. One type (e.g., lambda pleu9) transduces leuD, leuC, and leuB strains to prototrophy. The other type (e.g., lambda pleu 13) transduces leuA strains to prototrophy. lambda pleu 13 forms lysogens at low frequency (about 0.2%) by integration into the leucine operon. These lysogens are unstable, segregating phage-sensitive clones at high frequency (about 1%). Phages carrying different portions of the leucine operon were formed by aberrant excision after heat induction of strain CV437 (leuA371 lambda pleu13). A phage carrying the entire leucine operon (lambda K2) was constructed by a cross between lambda pleu9 and lambda pleu13. An analysis of leucine-forming enzyme levels in strains lysogenized with lambdaK2 indicated that leuO and leuP are present and functional in lambda K2. leu-specific messenger ribonucleic acid from E. coli hybridizes to the heavy (r) strand of lambdaK2. The leucine operon of lambda G4 pleuABCD (an S7 derivative of lambda K2) exists intact on a 7.3 x 10(6)-dalton fragment (lambdaG4EcoRI-B) generated by cleavage with endonuclease EcoRI. Heteroduplexes formed between lambda G4 and lambda show a 5.4 x 10(6)-dalton piece of bacterial deoxyribonucleic acid (DNA) replacing a 4.5 x 10(6)-dalton piece of lambda DNA starting at 0.46 fractional unit on the map of lambda. Fragment lambda G4EcoRI-B has about 0.6 x 10(6) daltons of lambda DNA from the b2 region at one end and about 1.4 x 10(6) daltons of lambda DNA from the int region at the other end.
在Shimada等人(1973年)描述的大肠杆菌溶原菌HfrH73中,由于噬菌体λ插入顺反子leuA,亮氨酸操纵子编码的酶均未合成。λ在染色体中的方向是ara leuDCB λ JAN leuA。对该溶原菌进行热诱导后,会以低频率形成两种类型的噬菌斑形成转导噬菌体。一种类型(如λ pleu9)可将leuD、leuC和leuB菌株转导为原养型。另一种类型(如λ pleu 13)可将leuA菌株转导为原养型。λ pleu 13通过整合到亮氨酸操纵子中以低频率(约0.2%)形成溶原菌。这些溶原菌不稳定,会以高频率(约1%)分离出对噬菌体敏感的克隆。在对菌株CV437(leuA371 λ pleu13)进行热诱导后,通过异常切除形成了携带亮氨酸操纵子不同部分的噬菌体。通过λ pleu9和λ pleu13之间的杂交构建了携带完整亮氨酸操纵子的噬菌体(λ K2)。对用λK2溶原化的菌株中亮氨酸形成酶水平的分析表明,leuO和leuP存在于λ K2中且具有功能。来自大肠杆菌的亮氨酸特异性信使核糖核酸与λK2的重(r)链杂交。λ G4 pleuABCD(λ K2的S7衍生物)的亮氨酸操纵子完整地存在于由核酸内切酶EcoRI切割产生的7.3×10⁶道尔顿片段(λG4EcoRI - B)上。λ G4和λ之间形成的异源双链体显示,一段5.4×10⁶道尔顿的细菌脱氧核糖核酸(DNA)取代了λ DNA上从λ图谱上0.46分数单位开始的一段4.5×10⁶道尔顿的λ DNA。片段λ G4EcoRI - B一端有约0.6×10⁶道尔顿来自b2区域的λ DNA,另一端有约1.4×10⁶道尔顿来自int区域的λ DNA。