Suppr超能文献

蛋氨酸生物合成对鼠伤寒沙门氏菌LT2中丝氨酸转羟甲基酶调节的影响。

Influence of methionine biosynthesis on serine transhydroxymethylase regulation in Salmonella typhimurium LT2.

作者信息

Stauffer G V, Brenchley J E

出版信息

J Bacteriol. 1977 Feb;129(2):740-9. doi: 10.1128/jb.129.2.740-749.1977.

Abstract

The enzyme serine transhydroxymethylase (EC 2.1.2.1; L-serine:tetrahydrofolate-5,10-hydroxymethyltransferase) is responsible both for the synthesis of glycine from serine and production of the 5,10-methylenetetrahydrofolate necessary as a methyl donor for methionine synthesis. Two mutants selected for alteration in serine transhydroxymethylase regulation also have phenotypes characteristic of metK (methionine regulatory) mutants, including ethionine, norleucine, and alpha-methylmethionine resistance and reduced levels of S-adenosylmethionine synthetase (EC 2.5.1.6; adenosine 5'-triphosphate:L-methionine S-adenosyltransferase) activity. Because this suggested the existence of a common regulatory component, the regulation of serine transhydroxymethylase was examined in other methionine regulatory mutants (metK and metJ mutants). Normally, serine transhydroxymethylase levels are repressed three- to sixfold in cells grown in the presence of serine, glycine, methionine, adenine, guanine, and thymine. This does not occur in metK and metJ mutants; thus, these mutations do affect the regulation of both serine transhydroxymethylase and the methionine biosynthetic enzymes. Lesions in the metK gene have been reported to reduce S-adenosylmethionine synthetase levels. To determine whether the metK gene actually encodes for S-adenosylmethionine synthetase, a mutant was characterized in which this enzyme has a 26-fold increased apparent Km for methionine. This mutation causes a phenotype associated with metK mutants and is cotransducible with the serA locus at the same frequency as metK lesions. Thus, the affect of metK mutations on the regulation of glycine and methionine synthesis in Salmonella typhimurium appears to be due to either an altered S-adenosylmethionine synthetase or altered S-adenosylmethionine pools.

摘要

丝氨酸转羟甲基酶(EC 2.1.2.1;L-丝氨酸:四氢叶酸-5,10-羟甲基转移酶)既负责从丝氨酸合成甘氨酸,也负责生成5,10-亚甲基四氢叶酸,后者是甲硫氨酸合成所需的甲基供体。选择的两个丝氨酸转羟甲基酶调节发生改变的突变体也具有metK(甲硫氨酸调节)突变体的表型特征,包括对乙硫氨酸、正亮氨酸和α-甲基甲硫氨酸有抗性,以及S-腺苷甲硫氨酸合成酶(EC 2.5.1.6;腺苷5'-三磷酸:L-甲硫氨酸S-腺苷转移酶)活性水平降低。由于这表明存在一个共同的调节成分,因此在其他甲硫氨酸调节突变体(metK和metJ突变体)中研究了丝氨酸转羟甲基酶的调节。正常情况下,在丝氨酸、甘氨酸、甲硫氨酸、腺嘌呤、鸟嘌呤和胸腺嘧啶存在的条件下生长的细胞中,丝氨酸转羟甲基酶水平会被抑制三到六倍。在metK和metJ突变体中不会发生这种情况;因此,这些突变确实会影响丝氨酸转羟甲基酶和甲硫氨酸生物合成酶的调节。据报道,metK基因中的损伤会降低S-腺苷甲硫氨酸合成酶水平。为了确定metK基因是否真的编码S-腺苷甲硫氨酸合成酶,对一个突变体进行了表征,在该突变体中,这种酶对甲硫氨酸的表观Km增加了26倍。这种突变导致了与metK突变体相关的表型,并且与serA位点共转导的频率与metK损伤相同。因此,metK突变对鼠伤寒沙门氏菌中甘氨酸和甲硫氨酸合成调节的影响似乎是由于S-腺苷甲硫氨酸合成酶改变或S-腺苷甲硫氨酸库改变所致。

相似文献

2
3
Role of methionine in the regulation of serine hydroxymethyltransferase in Eschericia coli.
J Bacteriol. 1975 Oct;124(1):269-78. doi: 10.1128/jb.124.1.269-278.1975.
4
The synthesis of S-adenosylmethionine by mutants with defects in S-adenosylmethionine synthetase.
Mol Gen Genet. 1976 Feb 27;144(1):87-95. doi: 10.1007/BF00277310.
5
Regulation of homocysteine biosynthesis in Salmonella typhimurium.
J Bacteriol. 1972 Aug;111(2):547-56. doi: 10.1128/jb.111.2.547-556.1972.
6
Regulation of serine transhydroxymethylase activity in Salmonella typhimurium.
J Bacteriol. 1974 Dec;120(3):1017-25. doi: 10.1128/jb.120.3.1017-1025.1974.
8
Regulation of the methionine feedback-sensitive enzyme in mutants of Salmonella typhimurium.
J Bacteriol. 1972 Jan;109(1):8-11. doi: 10.1128/jb.109.1.8-11.1972.
9
S-adenosylmethionine synthetase in methionine regulatory mutants of Salmonella typhimurium.
Mol Gen Genet. 1973 Oct 16;126(1):7-18. doi: 10.1007/BF00333477.
10
Isozymes of S-adenosylmethionine synthetase are encoded by tandemly duplicated genes in Escherichia coli.
Mol Microbiol. 1993 Aug;9(4):835-46. doi: 10.1111/j.1365-2958.1993.tb01742.x.

引用本文的文献

2
Growth Inhibition of Streptomyces Species by l-Serine and Its Effect on Tetracycline Biosynthesis.
Appl Environ Microbiol. 1981 Feb;41(2):366-70. doi: 10.1128/aem.41.2.366-370.1981.
3
Escherichia coli cis- and trans-acting mutations that increase glyA gene expression.
Mol Gen Genet. 1996 Jan 15;250(1):81-8. doi: 10.1007/BF02191827.
4
Characterization of the MetR binding sites for the glyA gene of Escherichia coli.
J Bacteriol. 1995 Jul;177(14):4113-20. doi: 10.1128/jb.177.14.4113-4120.1995.
7
The Salmonella typhimurium glycine cleavage enzyme system.
Mol Gen Genet. 1989 Dec;220(1):154-6. doi: 10.1007/BF00260870.
8
Regulation of the Escherichia coli glyA gene by the metR gene product and homocysteine.
J Bacteriol. 1989 Sep;171(9):4958-62. doi: 10.1128/jb.171.9.4958-4962.1989.
9
Regulation of the Escherichia coli glyA gene by the purR gene product.
J Bacteriol. 1990 Jul;172(7):3799-803. doi: 10.1128/jb.172.7.3799-3803.1990.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
2
GLYCINE SYNTHESIS AND METABOLISM IN ESCHERICHIA COLI.
J Bacteriol. 1965 Apr;89(4):1145-50. doi: 10.1128/jb.89.4.1145-1150.1965.
3
NUTRITIONAL AND REGULATORY ASPECTS OF SERINE METABOLISM IN ESCHERICHIA COLI.
J Bacteriol. 1964 Sep;88(3):611-9. doi: 10.1128/jb.88.3.611-619.1964.
5
Inhibition of growth of Escherichia coli and of homoserine O-transsuccinylase by alpha-methylmethionine.
J Bacteriol. 1967 Aug;94(2):327-32. doi: 10.1128/jb.94.2.327-332.1967.
6
Control of one-carbon metabolism in a methionine-B12 auxotroph of Escherichia coli.
Arch Biochem Biophys. 1966 Nov;117(2):405-12. doi: 10.1016/0003-9861(66)90429-2.
7
A new generalized transducing phage for Salmonella typhimurium LT2.
Virology. 1971 Sep;45(3):835-6. doi: 10.1016/0042-6822(71)90208-x.
8
Regulation of S-adenosylmethionine synthetase in Escherichia coli.
J Bacteriol. 1970 Nov;104(2):734-47. doi: 10.1128/jb.104.2.734-747.1970.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验