Suppr超能文献

开发并验证了一种术前列线图,用于预测接受根治性前列腺切除术的局部晚期前列腺癌患者的生存情况。

Development and validation of a preoperative nomogram for predicting survival of patients with locally advanced prostate cancer after radical prostatectomy.

机构信息

Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, People's Republic of China.

Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics and Center of Biomedical Big Data, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.

出版信息

BMC Cancer. 2020 Feb 4;20(1):97. doi: 10.1186/s12885-020-6565-5.

Abstract

BACKGROUND

For selected locally advanced prostate cancer (PCa) patients, radical prostatectomy (RP) is one of the first-line treatments. We aimed to develop a preoperative nomogram to identify what kinds of patients can get the most survival benefits after RP.

METHODS

We conducted analyses with data from the Surveillance, Epidemiology, and End Results (SEER) database. Covariates used for analyses included age at diagnosis, marital status, race, American Joint Committee on Cancer (AJCC) 7th TNM stage, Prostate specific antigen, Gleason biopsy score (GS), percent of positive cores. We estimated the cumulative incidence function for cause-specific death. The Fine and Gray's proportional subdistribution hazard approach was used to perform multivariable competing risk analyses and reveal prognostic factors. A nomogram was built by these factors (including GS, percent of positive cores and N stage) and validated by concordance index and calibration curves. Risk stratification was established based on the nomogram.

RESULTS

We studied 14,185 patients. N stage, GS, and percent of positive cores were the independent prognostic factors used to construct the nomogram. For validating, in the training cohort, the C-index was 0.779 (95% CI 0.736-0.822), and in the validation cohort, the C-index was 0.773 (95% CI 0.710-0.836). Calibration curves showed that the predicted survival and actual survival were very close. The nomogram performed better over the AJCC staging system (C-index 0.779 versus 0.764 for training cohort, and 0.773 versus 0.744 for validation cohort). The new stratification of risk groups based on the nomogram also showed better discrimination than the AJCC staging system.

CONCLUSIONS

The preoperative nomogram can provide favorable prognosis stratification ability to help clinicians identify patients who are suitable for surgery.

摘要

背景

对于某些局部晚期前列腺癌(PCa)患者,根治性前列腺切除术(RP)是一线治疗方法之一。我们旨在开发一种术前列线图,以确定哪些患者在接受 RP 后能获得最大的生存获益。

方法

我们对来自监测、流行病学和最终结果(SEER)数据库的数据进行了分析。用于分析的协变量包括诊断时的年龄、婚姻状况、种族、美国癌症联合委员会(AJCC)第 7 版 TNM 分期、前列腺特异性抗原、Gleason 活检评分(GS)、阳性核心百分比。我们估计了特定原因死亡的累积发生率函数。采用 Fine 和 Gray 的比例亚分布风险方法进行多变量竞争风险分析,以揭示预后因素。通过这些因素(包括 GS、阳性核心百分比和 N 分期)构建了一个列线图,并通过一致性指数和校准曲线进行验证。基于列线图进行风险分层。

结果

我们研究了 14185 名患者。N 分期、GS 和阳性核心百分比是用于构建列线图的独立预后因素。在验证中,训练队列的 C 指数为 0.779(95%CI 0.736-0.822),验证队列的 C 指数为 0.773(95%CI 0.710-0.836)。校准曲线表明预测生存率和实际生存率非常接近。列线图在 AJCC 分期系统上的表现优于 AJCC 分期系统(训练队列的 C 指数为 0.779 对 0.764,验证队列的 C 指数为 0.773 对 0.744)。基于列线图的新风险分层也显示出比 AJCC 分期系统更好的区分能力。

结论

术前列线图可以提供有利的预后分层能力,帮助临床医生识别适合手术的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/677e/7001324/fd9f3fa43d82/12885_2020_6565_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验