Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA.
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
Nat Commun. 2020 Feb 5;11(1):732. doi: 10.1038/s41467-020-14407-9.
Tumors accumulate thousands of mutations, and sequencing them has given rise to methods for finding cancer drivers via mutational recurrence. However, these methods require large cohorts and underperform for low recurrence. Recently, ultra-deep sequencing has enabled accurate measurement of VAFs (variant-allele frequencies) for mutations, allowing the determination of evolutionary trajectories. Here, based solely on the VAF spectrum for an individual sample, we report on a method that identifies drivers and quantifies tumor growth. Drivers introduce perturbations into the spectrum, and our method uses the frequency of hitchhiking mutations preceding a driver to measure this. As validation, we use simulation models and 993 tumors from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium with previously identified drivers. Then we apply our method to an ultra-deep sequenced acute myeloid leukemia (AML) tumor and identify known cancer genes and additional driver candidates. In summary, our framework presents opportunities for personalized driver diagnosis using sequencing data from a single individual.
肿瘤积累了数千个突变,通过突变重现,对这些突变进行测序已经产生了寻找癌症驱动基因的方法。然而,这些方法需要大量的队列,并且在低复发率时表现不佳。最近,超高深度测序使得对突变的 VAF(变异等位基因频率)进行准确测量成为可能,从而能够确定进化轨迹。在这里,我们仅基于单个样本的 VAF 谱,报告了一种识别驱动基因和量化肿瘤生长的方法。驱动基因会对谱产生干扰,我们的方法使用在驱动基因之前出现的搭便车突变的频率来衡量这一点。作为验证,我们使用模拟模型和来自 Pan-Cancer Analysis of Whole Genomes (PCAWG) 联盟的 993 个肿瘤,这些肿瘤有之前确定的驱动基因。然后,我们将我们的方法应用于一个超高深度测序的急性髓系白血病 (AML) 肿瘤,并鉴定出已知的癌症基因和其他候选驱动基因。总之,我们的框架为使用单个个体的测序数据进行个性化驱动基因诊断提供了机会。