文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过交流生物磁测量法评估磁性纳米颗粒的长期清除率和生物分布

Long-Term Clearance and Biodistribution of Magnetic Nanoparticles Assessed by AC Biosusceptometry.

作者信息

Soares Guilherme A, Faria João V C, Pinto Leonardo A, Prospero Andre G, Pereira Gabriele M, Stoppa Erick G, Buranello Lais P, Bakuzis Andris F, Baffa Oswaldo, Miranda José R A

机构信息

Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu 18618-689, SP, Brazil.

Institute of Physics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil.

出版信息

Materials (Basel). 2022 Mar 14;15(6):2121. doi: 10.3390/ma15062121.


DOI:10.3390/ma15062121
PMID:35329574
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8948936/
Abstract

Once administered in an organism, the physiological parameters of magnetic nanoparticles (MNPs) must be addressed, as well as their possible interactions and retention and elimination profiles. Alternating current biosusceptometry (ACB) is a biomagnetic detection system used to detect and quantify MNPs. The aims of this study were to evaluate the biodistribution and clearance of MNPs profiles through long-time in vivo analysis and determine the elimination time carried out by the association between the ACB system and MnFeO nanoparticles. The liver, lung, spleen, kidneys, and heart and a blood sample were collected for biodistribution analysis and, for elimination analysis, and over 60 days. During the period analyzed, the animal's feces were also collectedd. It was possible to notice a higher uptake by the liver and the spleen due to their characteristics of retention and uptake. In 60 days, we observed an absence of MNPs in the spleen and a significant decay in the liver. We also determined the MNPs' half-life through the liver and the spleen elimination. The data indicated a concentration decay profile over the 60 days, which suggests that, in addition to elimination via feces, there is an endogenous mechanism of metabolization or possible agglomeration of MNPs, resulting in loss of ACB signal intensity.

摘要

一旦磁性纳米颗粒(MNPs)被注入生物体,就必须研究其生理参数,以及它们可能的相互作用、留存和清除情况。交变电流生物磁化率测定法(ACB)是一种用于检测和量化MNPs的生物磁检测系统。本研究的目的是通过长期体内分析评估MNPs的生物分布和清除情况,并确定ACB系统与MnFeO纳米颗粒结合后的清除时间。采集肝脏、肺、脾脏、肾脏、心脏以及一份血液样本用于生物分布分析,并在60多天的时间里进行清除分析。在分析期间,还收集了动物的粪便。由于肝脏和脾脏的留存和摄取特性,可以注意到它们对MNPs的摄取量更高。在60天内,我们观察到脾脏中没有MNPs,肝脏中的MNPs显著减少。我们还通过肝脏和脾脏的清除情况确定了MNPs的半衰期。数据表明在60天内浓度呈衰减趋势,这表明除了通过粪便清除外,还存在MNPs的内源性代谢机制或可能的团聚,导致ACB信号强度丧失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01d7/8948936/758457dadbfe/materials-15-02121-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01d7/8948936/5b8fc34dbd6f/materials-15-02121-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01d7/8948936/e344a35d0919/materials-15-02121-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01d7/8948936/d11031ae4e9e/materials-15-02121-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01d7/8948936/b0187bde4092/materials-15-02121-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01d7/8948936/758457dadbfe/materials-15-02121-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01d7/8948936/5b8fc34dbd6f/materials-15-02121-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01d7/8948936/e344a35d0919/materials-15-02121-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01d7/8948936/d11031ae4e9e/materials-15-02121-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01d7/8948936/b0187bde4092/materials-15-02121-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01d7/8948936/758457dadbfe/materials-15-02121-g005.jpg

相似文献

[1]
Long-Term Clearance and Biodistribution of Magnetic Nanoparticles Assessed by AC Biosusceptometry.

Materials (Basel). 2022-3-14

[2]
2D Quantitative Imaging of Magnetic Nanoparticles by an AC Biosusceptometry Based Scanning Approach and Inverse Problem.

Sensors (Basel). 2021-10-25

[3]
Dynamic cerebral perfusion parameters and magnetic nanoparticle accumulation assessed by AC biosusceptometry.

Biomed Tech (Berl). 2020-5-26

[4]
Evaluation and imaging of biodistribution of magnetic nanoparticles in a model of hepatic cirrhosis via alternating current biosusceptometry.

Biomed Phys Eng Express. 2024-9-20

[5]
AC biosusceptometry and magnetic nanoparticles to assess doxorubicin-induced kidney injury in rats.

Nanomedicine (Lond). 2020-2

[6]
Biodistribution Profile of Magnetic Nanoparticles in Cirrhosis-Associated Hepatocarcinogenesis in Rats by AC Biosusceptometry.

Pharmaceutics. 2022-9-8

[7]
Corona protein impacts on alternating current biosusceptometry signal and circulation times of differently coated MnFeO nanoparticles.

Nanomedicine (Lond). 2021-10

[8]
Real-time liver uptake and biodistribution of magnetic nanoparticles determined by AC biosusceptometry.

Nanomedicine. 2017-2-16

[9]
Multichannel AC Biosusceptometry System to Map Biodistribution and Assess the Pharmacokinetic Profile of Magnetic Nanoparticles by Imaging.

IEEE Trans Nanobioscience. 2019-4-18

[10]
Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats.

Mol Pharm. 2008

引用本文的文献

[1]
Morphology Effect of PEGylated Iron Oxide Nanoparticles on the Enhancement of MRI Contrast Signal in Breast Cancer.

ACS Appl Mater Interfaces. 2025-8-6

[2]
Embracing cancer immunotherapy with manganese particles.

Cell Oncol (Dordr). 2025-5-21

[3]
Polymer-Functionalized Magnetic Nanoparticles for Targeted Quercetin Delivery: A Potential Strategy for Colon Cancer Treatment.

Pharmaceutics. 2025-4-3

[4]
Biotransformation and biological fate of magnetic iron oxide nanoparticles for biomedical research and clinical applications.

Nanoscale Adv. 2025-3-24

[5]
Targeted Thrombolysis with Magnetic Nanotherapeutics: A Translational Assessment.

Pharmaceutics. 2024-4-27

[6]
Magnetic Nanostructures and Stem Cells for Regenerative Medicine, Application in Liver Diseases.

Int J Mol Sci. 2023-5-26

[7]
Immunogenic Cell Death Photothermally Mediated by Erythrocyte Membrane-Coated Magnetofluorescent Nanocarriers Improves Survival in Sarcoma Model.

Pharmaceutics. 2023-3-14

[8]
Analysis of Experimental Data on Changes in Various Structures and Functions of the Rat Brain following Intranasal Administration of FeO Nanoparticles.

Int J Mol Sci. 2023-2-10

[9]
Recent Advances in Stimuli-Responsive Doxorubicin Delivery Systems for Liver Cancer Therapy.

Polymers (Basel). 2022-12-1

[10]
Efficient Tumor Eradication at Ultralow Drug Concentration via Externally Controlled and Boosted Metallic Iron Magnetoplasmonic Nanocapsules.

ACS Nano. 2023-2-14

本文引用的文献

[1]
Corona protein impacts on alternating current biosusceptometry signal and circulation times of differently coated MnFeO nanoparticles.

Nanomedicine (Lond). 2021-10

[2]
Long-Term Fate of Magnetic Particles in Mice: A Comprehensive Study.

ACS Nano. 2021-7-27

[3]
Magnetic Nanoparticles in Biology and Medicine: Past, Present, and Future Trends.

Pharmaceutics. 2021-6-24

[4]
Iron Oxide Nanoparticle Uptake in Mouse Brachiocephalic Artery Atherosclerotic Plaque Quantified by T-Mapping MRI.

Pharmaceutics. 2021-2-19

[5]
A Perspective on Cell Tracking with Magnetic Particle Imaging.

Tomography. 2020-12

[6]
Distributed 2D temperature sensing during nanoparticles assisted laser ablation by means of high-scattering fiber sensors.

Sci Rep. 2020-7-28

[7]
Potential Toxicity of Iron Oxide Magnetic Nanoparticles: A Review.

Molecules. 2020-7-10

[8]
A review of the application of nanoparticles in the diagnosis and treatment of chronic kidney disease.

Bioact Mater. 2020-6-15

[9]
Controlling evolution of protein corona: a prosperous approach to improve chitosan-based nanoparticle biodistribution and half-life.

Sci Rep. 2020-6-15

[10]
Magnetic Nanoparticles as MRI Contrast Agents.

Top Curr Chem (Cham). 2020-5-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索