Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht University, the Netherlands.
Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
Theranostics. 2020 Jan 1;10(4):1884-1909. doi: 10.7150/thno.38625. eCollection 2020.
Genetic and phenotypic tumour heterogeneity is an important cause of therapy resistance. Moreover, non-uniform spatial drug distribution in cancer treatment may cause pseudo-resistance, meaning that a treatment is ineffective because the drug does not reach its target at sufficient concentrations. Together with tumour heterogeneity, non-uniform drug distribution causes "therapy heterogeneity": a spatially heterogeneous treatment effect. Spatial heterogeneity in drug distribution occurs on all scales ranging from interpatient differences to intratumour differences on tissue or cellular scale. Nanomedicine aims to improve the balance between efficacy and safety of drugs by targeting drug-loaded nanoparticles specifically to tumours. Spatial heterogeneity in nanoparticle and payload distribution could be an important factor that limits their efficacy in patients. Therefore, imaging spatial nanoparticle distribution and imaging the tumour environment giving rise to this distribution could help understand (lack of) clinical success of nanomedicine. Imaging the nanoparticle, drug and tumour environment can lead to improvements of new nanotherapies, increase understanding of underlying mechanisms of heterogeneous distribution, facilitate patient selection for nanotherapies and help assess the effect of treatments that aim to reduce heterogeneity in nanoparticle distribution. In this review, we discuss three groups of imaging modalities applied in nanomedicine research: non-invasive clinical imaging methods (nuclear imaging, MRI, CT, ultrasound), optical imaging and mass spectrometry imaging. Because each imaging modality provides information at a different scale and has its own strengths and weaknesses, choosing wisely and combining modalities will lead to a wealth of information that will help bring nanomedicine forward.
遗传和表型肿瘤异质性是导致治疗耐药的一个重要原因。此外,癌症治疗中药物的非均匀空间分布可能导致假性耐药,即一种治疗无效,因为药物不能以足够的浓度到达其靶标。与肿瘤异质性一起,药物分布的不均匀性导致“治疗异质性”:即治疗效果的空间异质性。药物分布的空间异质性发生在所有尺度上,从患者之间的差异到组织或细胞尺度上的肿瘤内差异。纳米医学旨在通过将载药纳米颗粒靶向肿瘤来提高药物的疗效和安全性之间的平衡。纳米颗粒和有效载荷分布的空间异质性可能是限制其在患者中疗效的一个重要因素。因此,对纳米颗粒分布的空间成像以及导致这种分布的肿瘤环境进行成像,可以帮助我们了解纳米医学的临床应用缺乏成功的原因。对纳米颗粒、药物和肿瘤环境进行成像可以改进新的纳米疗法,增加对异质分布潜在机制的理解,有助于为纳米疗法选择合适的患者,并有助于评估旨在减少纳米颗粒分布异质性的治疗效果。在这篇综述中,我们讨论了应用于纳米医学研究的三组成像方式:非侵入性临床成像方法(核成像、MRI、CT、超声)、光学成像和质谱成像。由于每种成像方式在不同的尺度上提供信息,并且具有自身的优势和劣势,因此明智地选择和组合成像方式将提供丰富的信息,有助于推动纳米医学的发展。
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024
Int J Nanomedicine. 2014-1-29
Theranostics. 2020
Biomed Mater. 2021-2-18
Drug Resist Updat. 2011-2-16
Future Med Chem. 2015-8
Comput Struct Biotechnol J. 2025-8-7
ACS Appl Mater Interfaces. 2025-7-2
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024
Cancers (Basel). 2019-10-9
Theranostics. 2019-6-19
J Pharm Sci. 2019-5-13
Polymers (Basel). 2018-8-30
Pleura Peritoneum. 2018-12-18