Suppr超能文献

潜伏期影响塞拉利昂霍乱和埃博拉疫情的空间可预测性。

Incubation periods impact the spatial predictability of cholera and Ebola outbreaks in Sierra Leone.

机构信息

Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115.

Institute for Cross-Disciplinary Physics and Complex Systems, Universitat de les Illes Balears - Consell Superior d'Investigacions Científiques, E-07122 Palma de Mallorca, Spain.

出版信息

Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):5067-5073. doi: 10.1073/pnas.1913052117. Epub 2020 Feb 13.

Abstract

Forecasting the spatiotemporal spread of infectious diseases during an outbreak is an important component of epidemic response. However, it remains challenging both methodologically and with respect to data requirements, as disease spread is influenced by numerous factors, including the pathogen's underlying transmission parameters and epidemiological dynamics, social networks and population connectivity, and environmental conditions. Here, using data from Sierra Leone, we analyze the spatiotemporal dynamics of recent cholera and Ebola outbreaks and compare and contrast the spread of these two pathogens in the same population. We develop a simulation model of the spatial spread of an epidemic in order to examine the impact of a pathogen's incubation period on the dynamics of spread and the predictability of outbreaks. We find that differences in the incubation period alone can determine the limits of predictability for diseases with different natural history, both empirically and in our simulations. Our results show that diseases with longer incubation periods, such as Ebola, where infected individuals can travel farther before becoming infectious, result in more long-distance sparking events and less predictable disease trajectories, as compared to the more predictable wave-like spread of diseases with shorter incubation periods, such as cholera.

摘要

在疫情爆发期间预测传染病的时空传播是疫情应对的一个重要组成部分。然而,这在方法上和数据需求方面都具有挑战性,因为疾病传播受到许多因素的影响,包括病原体的潜在传播参数和流行病学动态、社会网络和人口连通性以及环境条件。在这里,我们使用来自塞拉利昂的数据,分析了最近霍乱和埃博拉疫情的时空动态,并比较和对比了这两种病原体在同一人群中的传播。我们开发了一种传染病空间传播的模拟模型,以研究病原体潜伏期对传播动态和疫情可预测性的影响。我们发现,仅潜伏期的差异就可以决定具有不同自然史的疾病的可预测性极限,无论是从经验上还是从我们的模拟中都是如此。我们的研究结果表明,潜伏期较长的疾病,如埃博拉病毒,感染者在变得具有传染性之前可以传播得更远,因此与潜伏期较短的疾病(如霍乱)更可预测的波浪式传播相比,会导致更多的远距离触发事件和更不可预测的疾病轨迹。

相似文献

8
From one to the other: responding to Ebola cases on either side of the line.从一方到另一方:应对国界两侧的埃博拉病例。
Pan Afr Med J. 2017 May 28;27(Suppl 1):12. doi: 10.11604/pamj.supp.2017.27.1.12568. eCollection 2017.
10

引用本文的文献

6
Mathematical Models for Cholera Dynamics-A Review.霍乱动力学的数学模型——综述
Microorganisms. 2022 Nov 29;10(12):2358. doi: 10.3390/microorganisms10122358.
8
Connecting the dots: understanding how human mobility shapes TB epidemics.串联点线:了解人类流动如何塑造结核病疫情。
Trends Microbiol. 2022 Nov;30(11):1036-1044. doi: 10.1016/j.tim.2022.04.005. Epub 2022 May 18.

本文引用的文献

2
Real-time Epidemic Forecasting: Challenges and Opportunities.实时疫情预测:挑战与机遇。
Health Secur. 2019 Jul/Aug;17(4):268-275. doi: 10.1089/hs.2019.0022.
3
On the predictability of infectious disease outbreaks.传染病爆发的可预测性。
Nat Commun. 2019 Feb 22;10(1):898. doi: 10.1038/s41467-019-08616-0.
4
Differential mobility and local variation in infection attack rate.感染发病率的差异迁移和局部变化。
PLoS Comput Biol. 2019 Jan 22;15(1):e1006600. doi: 10.1371/journal.pcbi.1006600. eCollection 2019 Jan.
5
Reconstruction and prediction of viral disease epidemics.病毒性疾病流行的重建与预测。
Epidemiol Infect. 2018 Nov 5;147:e34. doi: 10.1017/S0950268818002881.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验