Suppr超能文献

利用卷积神经网络技术开发一种高效的黑色素瘤检测方法。

Developing an efficient method for melanoma detection using CNN techniques.

机构信息

Department of Computer Science and Engineering, Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada, India.

出版信息

J Egypt Natl Canc Inst. 2024 Feb 26;36(1):6. doi: 10.1186/s43046-024-00210-w.

Abstract

BACKGROUND

More and more genetic and metabolic abnormalities are now known to cause cancer, which is typically deadly. Any bodily part may become infected by cancerous cells, which can be fatal. Skin cancer is one of the most prevalent types of cancer, and its prevalence is rising across the globe. Squamous and basal cell carcinomas, as well as melanoma, which is clinically aggressive and causes the majority of deaths, are the primary subtypes of skin cancer. Screening for skin cancer is therefore essential.

METHODS

The best way to quickly and precisely detect skin cancer is by using deep learning techniques. In this research deep learning techniques like MobileNetv2 and Dense net will be used for detecting or identifying two main kinds of tumors malignant and benign. For this research HAM10000 dataset is considered. This dataset consists of 10,000 skin lesion images and the disease comprises nonmelanocytic and melanocytic tumors. These two techniques can be used for detecting the malignant and benign. All these methods are compared and then a result can be inferred from their performance.

RESULTS

After the model evaluation, the accuracy for the MobileNetV2 was 85% and customized CNN was 95%. A web application has been developed with the Python framework that provides a graphical user interface with the best-trained model. The graphical user interface allows the user to enter the patient details and upload the lesion image. The image will be classified with the appropriate trained model which can predict whether the uploaded image is cancerous or non-cancerous. This web application also displays the percentage of cancer affected.

CONCLUSION

As per the comparisons between the two techniques customized CNN gives higher accuracy for the detection of melanoma.

摘要

背景

越来越多的遗传和代谢异常现在被认为会导致癌症,而癌症通常是致命的。任何身体部位都可能被癌细胞感染,这可能是致命的。皮肤癌是最常见的癌症类型之一,其在全球的发病率正在上升。鳞状细胞癌和基底细胞癌以及黑色素瘤是皮肤癌的主要亚型,黑色素瘤具有临床侵袭性,导致大多数死亡。因此,筛查皮肤癌至关重要。

方法

快速准确地检测皮肤癌的最佳方法是使用深度学习技术。在这项研究中,将使用深度学习技术,如 MobileNetv2 和 Dense net 来检测或识别两种主要的肿瘤——恶性和良性。为此研究考虑了 HAM10000 数据集。该数据集包含 10000 张皮肤病变图像,疾病包括非黑色素瘤和黑色素瘤肿瘤。这两种技术可用于检测恶性和良性肿瘤。将比较所有这些方法,并从它们的性能推断出结果。

结果

在模型评估后,MobileNetV2 的准确率为 85%,定制的 CNN 为 95%。使用 Python 框架开发了一个 Web 应用程序,该应用程序提供了一个带有最佳训练模型的图形用户界面。图形用户界面允许用户输入患者详细信息并上传病变图像。该图像将与适当的训练模型进行分类,该模型可以预测上传的图像是否为癌性或非癌性。该 Web 应用程序还显示受癌症影响的百分比。

结论

根据这两种技术的比较,定制的 CNN 对黑色素瘤的检测具有更高的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验