Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, 75205, Paris cedex 13, France.
IMDEA Nanociencia, c/ Faraday, 9, 28049, Madrid, Spain.
Small. 2020 Mar;16(11):e1904960. doi: 10.1002/smll.201904960. Epub 2020 Feb 20.
Progress of thermal tumor therapies and their translation into clinical practice are limited by insufficient nanoparticle concentration to release therapeutic heating at the tumor site after systemic administration. Herein, the use of Janus magneto-plasmonic nanoparticles, made of gold nanostars and iron oxide nanospheres, as efficient therapeutic nanoheaters whose on-site delivery can be improved by magnetic targeting, is proposed. Single and combined magneto- and photo-thermal heating properties of Janus nanoparticles render them as compelling heating elements, depending on the nanoparticle dose, magnetic lobe size, and milieu conditions. In cancer cells, a much more effective effect is observed for photothermia compared to magnetic hyperthermia, while combination of the two modalities into a magneto-photothermal treatment results in a synergistic cytotoxic effect in vitro. The high potential of the Janus nanoparticles for magnetic guiding confirms them to be excellent nanostructures for in vivo magnetically enhanced photothermal therapy, leading to efficient tumor growth inhibition.
热肿瘤疗法的进展及其向临床实践的转化受到限制,原因是全身给药后,纳米颗粒的浓度不足以在肿瘤部位释放治疗性加热。在此,提出使用由金纳米星和氧化铁纳米球组成的 Janus 磁等离子体纳米粒子作为高效治疗性纳米热体,其现场递送可以通过磁靶向来改善。Janus 纳米粒子的单磁和光热加热特性使它们成为有吸引力的加热元件,这取决于纳米颗粒剂量、磁叶大小和环境条件。在癌细胞中,与磁热疗相比,光热疗的效果要好得多,而将两种方式结合成磁光热治疗在体外会产生协同细胞毒性作用。Janus 纳米粒子在磁引导方面的高潜力证实了它们是用于体内磁增强光热治疗的优异纳米结构,可有效抑制肿瘤生长。