Suppr超能文献

将晶格氧氧化还原反应与电池电极的容量和电压降分离。

Dissociate lattice oxygen redox reactions from capacity and voltage drops of battery electrodes.

作者信息

Wu Jinpeng, Zhuo Zengqing, Rong Xiaohui, Dai Kehua, Lebens-Higgins Zachary, Sallis Shawn, Pan Feng, Piper Louis F J, Liu Gao, Chuang Yi-de, Hussain Zahid, Li Qinghao, Zeng Rong, Shen Zhi-Xun, Yang Wanli

机构信息

Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305, USA.

Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

出版信息

Sci Adv. 2020 Feb 7;6(6):eaaw3871. doi: 10.1126/sciadv.aaw3871. eCollection 2020 Feb.

Abstract

The oxygen redox (OR) activity is conventionally considered detrimental to the stability and kinetics of batteries. However, OR reactions are often confused by irreversible oxygen oxidation. Here, based on high-efficiency mapping of resonant inelastic x-ray scattering of both the transition metal and oxygen, we distinguish the lattice OR in Na[LiMn]O and compare it with Na[MgMn]O. Both systems display strong lattice OR activities but with distinct electrochemical stability. The comparison shows that the substantial capacity drop in Na[LiMn]O stems from non-lattice oxygen oxidations, and its voltage decay from an increasing Mn redox contribution upon cycling, contrasting those in Na[MgMn]O. We conclude that lattice OR is not the ringleader of the stability issue. Instead, irreversible oxygen oxidation and the changing cationic reactions lead to the capacity and voltage fade. We argue that lattice OR and other oxygen activities should/could be studied and treated separately to achieve viable OR-based electrodes.

摘要

传统上认为氧氧化还原(OR)活性对电池的稳定性和动力学有害。然而,OR反应常常被不可逆的氧氧化所混淆。在此,基于对过渡金属和氧的共振非弹性X射线散射的高效映射,我们区分了Na[LiMn]O中的晶格OR,并将其与Na[MgMn]O进行比较。这两个体系都表现出很强的晶格OR活性,但具有不同的电化学稳定性。比较表明,Na[LiMn]O中容量的大幅下降源于非晶格氧的氧化,其电压衰减源于循环过程中锰氧化还原贡献的增加,这与Na[MgMn]O中的情况形成对比。我们得出结论,晶格OR不是稳定性问题的罪魁祸首。相反,不可逆的氧氧化和不断变化的阳离子反应导致了容量和电压的衰减。我们认为,应该/可以分别研究和处理晶格OR和其他氧活性,以实现可行的基于OR的电极。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfd9/7007267/bf7104ed3c61/aaw3871-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验