College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China.
Int J Mol Sci. 2020 Feb 18;21(4):1357. doi: 10.3390/ijms21041357.
Following an in-depth transcriptomics-based approach, we first screened out and analyzed (in silico) motifs in a group of 63 drought-inducible genes (in soybean). Six novel synthetic promoters (SynP14-SynP19) were designed by concatenating 11 motifs, , and (in multiple copies and various combination) with a minimal 35s core promoter and a 222 bp synthetic intron sequence. In order to validate their drought-inducibility and root-specificity, the designed synthetic assemblies were transformed in soybean hairy roots to drive GUS gene using pCAMBIA3301. Through GUS histochemical assay (after a 72 h 6% PEG6000 treatment), we noticed higher glucuronidase activity in transgenic hairy roots harboring SynP15, SynP16, and SynP18. Further screening through GUS fluorometric assay flaunted SynP16 as the most appropriate combination of efficient drought-responsive motifs. Afterwards, we stably transformed SynP15, SynP16, and SynP18 in Arabidopsis and carried out GUS staining as well as fluorometric assays of the transgenic plants treated with simulated drought stress. Consistently, SynP16 retained higher transcriptional activity in Arabidopsis roots in response to drought. Thus the root-specific drought-inducible synthetic promoters designed using stimulus-specific motifs in a definite fashion could be exploited in developing drought tolerance in soybean and other crops as well. Moreover, the rationale of design extends our knowledge of trial-and-error based engineering to construct synthetic promoters for transcriptional upgradation against other stresses.
我们采用深入的基于转录组学的方法,首先筛选和分析了(计算机模拟)一组 63 个干旱诱导基因(在大豆中)的基序。通过串联 11 个基序、和 (多个副本和各种组合)与最小的 35s 核心启动子和 222 bp 合成内含子序列,设计了六个新的合成启动子(SynP14-SynP19)。为了验证它们的干旱诱导性和根特异性,将设计的合成组件转化为大豆毛状根,使用 pCAMBIA3301 驱动 GUS 基因。通过 GUS 组织化学分析(在 72 小时 6%PEG6000 处理后),我们注意到携带 SynP15、SynP16 和 SynP18 的转基因毛状根中的β-葡糖苷酸酶活性更高。通过 GUS 荧光测定进一步筛选,展示了 SynP16 是最有效的干旱响应基序组合。之后,我们在拟南芥中稳定转化了 SynP15、SynP16 和 SynP18,并对转基因植物进行了 GUS 染色和模拟干旱胁迫下的荧光测定。一致地,SynP16 在拟南芥根中对干旱表现出更高的转录活性。因此,使用特定方式设计的具有刺激特异性基序的根特异性干旱诱导合成启动子可用于在大豆和其他作物中开发抗旱性。此外,设计的原理扩展了我们基于试错的工程设计知识,以构建针对其他胁迫的转录升级的合成启动子。