Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada.
Mila - Quebec Artificial Intelligence Institute, Montreal, Canada.
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190661. doi: 10.1098/rstb.2019.0661. Epub 2020 Feb 24.
Network connectivity fingerprints are among today's best choices to obtain a faithful sampling of an individual's brain and cognition. Widely available MRI scanners can provide rich information tapping into network recruitment and reconfiguration that now scales to hundreds and thousands of humans. Here, we contemplate the advantages of analysing such connectome profiles using Bayesian strategies. These analysis techniques afford full probability estimates of the studied network coupling phenomena, provide analytical machinery to separate epistemological uncertainty and biological variability in a coherent manner, usher us towards avenues to go beyond binary statements on existence versus non-existence of an effect, and afford credibility estimates around all model parameters at play which thus enable single-subject predictions with rigorous uncertainty intervals. We illustrate the brittle boundary between healthy and diseased brain circuits by autism spectrum disorder as a recurring theme where, we argue, network-based approaches in neuroscience will require careful probabilistic answers. This article is part of the theme issue 'Unifying the essential concepts of biological networks: biological insights and philosophical foundations'.
网络连通指纹是当今获取个体大脑和认知忠实采样的最佳选择之一。广泛可用的 MRI 扫描仪可以提供丰富的信息,利用网络招募和重新配置,现在可以扩展到数百甚至数千人。在这里,我们考虑使用贝叶斯策略分析这种连接组谱的优势。这些分析技术为所研究的网络耦合现象提供了完整的概率估计,为以一致的方式分离认识论不确定性和生物学可变性提供了分析机制,引导我们超越存在或不存在效应的二元陈述,并为所有发挥作用的模型参数提供可信度估计,从而能够在严格的不确定性区间内对单个主体进行预测。我们以自闭症谱系障碍为例来说明健康和患病大脑回路之间的脆弱界限,我们认为,神经科学中的基于网络的方法将需要仔细的概率答案。本文是主题为“统一生物网络的基本概念:生物学见解和哲学基础”的一部分。