Suppr超能文献

在群体神经科学中分析大脑网络:贝叶斯哲学的一个案例。

Analysing brain networks in population neuroscience: a case for the Bayesian philosophy.

机构信息

Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada.

Mila - Quebec Artificial Intelligence Institute, Montreal, Canada.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190661. doi: 10.1098/rstb.2019.0661. Epub 2020 Feb 24.

Abstract

Network connectivity fingerprints are among today's best choices to obtain a faithful sampling of an individual's brain and cognition. Widely available MRI scanners can provide rich information tapping into network recruitment and reconfiguration that now scales to hundreds and thousands of humans. Here, we contemplate the advantages of analysing such connectome profiles using Bayesian strategies. These analysis techniques afford full probability estimates of the studied network coupling phenomena, provide analytical machinery to separate epistemological uncertainty and biological variability in a coherent manner, usher us towards avenues to go beyond binary statements on existence versus non-existence of an effect, and afford credibility estimates around all model parameters at play which thus enable single-subject predictions with rigorous uncertainty intervals. We illustrate the brittle boundary between healthy and diseased brain circuits by autism spectrum disorder as a recurring theme where, we argue, network-based approaches in neuroscience will require careful probabilistic answers. This article is part of the theme issue 'Unifying the essential concepts of biological networks: biological insights and philosophical foundations'.

摘要

网络连通指纹是当今获取个体大脑和认知忠实采样的最佳选择之一。广泛可用的 MRI 扫描仪可以提供丰富的信息,利用网络招募和重新配置,现在可以扩展到数百甚至数千人。在这里,我们考虑使用贝叶斯策略分析这种连接组谱的优势。这些分析技术为所研究的网络耦合现象提供了完整的概率估计,为以一致的方式分离认识论不确定性和生物学可变性提供了分析机制,引导我们超越存在或不存在效应的二元陈述,并为所有发挥作用的模型参数提供可信度估计,从而能够在严格的不确定性区间内对单个主体进行预测。我们以自闭症谱系障碍为例来说明健康和患病大脑回路之间的脆弱界限,我们认为,神经科学中的基于网络的方法将需要仔细的概率答案。本文是主题为“统一生物网络的基本概念:生物学见解和哲学基础”的一部分。

相似文献

1
Analysing brain networks in population neuroscience: a case for the Bayesian philosophy.在群体神经科学中分析大脑网络:贝叶斯哲学的一个案例。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190661. doi: 10.1098/rstb.2019.0661. Epub 2020 Feb 24.
5
Bayesian networks for fMRI: a primer.贝叶斯网络在 fMRI 中的应用:入门指南。
Neuroimage. 2014 Feb 1;86:573-82. doi: 10.1016/j.neuroimage.2013.10.020. Epub 2013 Oct 18.
6
Brain network communication: concepts, models and applications.脑网络通讯:概念、模型与应用。
Nat Rev Neurosci. 2023 Sep;24(9):557-574. doi: 10.1038/s41583-023-00718-5. Epub 2023 Jul 12.
8
A generative model of whole-brain effective connectivity.全脑有效连接的生成模型。
Neuroimage. 2018 Oct 1;179:505-529. doi: 10.1016/j.neuroimage.2018.05.058. Epub 2018 May 25.
10
Null models in network neuroscience.网络神经科学中的零模型。
Nat Rev Neurosci. 2022 Aug;23(8):493-504. doi: 10.1038/s41583-022-00601-9. Epub 2022 May 31.

引用本文的文献

本文引用的文献

1
10,000 social brains: Sex differentiation in human brain anatomy.万人大脑计划:人类大脑解剖结构的性别差异。
Sci Adv. 2020 Mar 18;6(12):eaaz1170. doi: 10.1126/sciadv.aaz1170. eCollection 2020 Mar.
3
Towards Algorithmic Analytics for Large-scale Datasets.面向大规模数据集的算法分析
Nat Mach Intell. 2019 Jul;1(7):296-306. doi: 10.1038/s42256-019-0069-5. Epub 2019 Jul 9.
5
Conceptualizing mental disorders as deviations from normative functioning.将精神障碍概念化为偏离正常功能。
Mol Psychiatry. 2019 Oct;24(10):1415-1424. doi: 10.1038/s41380-019-0441-1. Epub 2019 Jun 14.
6
Dissecting the Heterogeneous Cortical Anatomy of Autism Spectrum Disorder Using Normative Models.利用规范模型剖析自闭症谱系障碍的异质皮质解剖结构。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2019 Jun;4(6):567-578. doi: 10.1016/j.bpsc.2018.11.013. Epub 2018 Dec 19.
9
Advances in Variational Inference.变分推理的进展
IEEE Trans Pattern Anal Mach Intell. 2019 Aug;41(8):2008-2026. doi: 10.1109/TPAMI.2018.2889774. Epub 2018 Dec 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验