Suppr超能文献

与发育毒性相关的工程纳米材料特性的多变量建模

Multivariate modeling of engineered nanomaterial features associated with developmental toxicity.

作者信息

To Kimberly T, Truong Lisa, Edwards Sabrina, Tanguay Robert L, Reif David M

机构信息

Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.

Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC, USA.

出版信息

NanoImpact. 2019 Apr;16. doi: 10.1016/j.impact.2019.100185. Epub 2019 Nov 1.

Abstract

Despite the increasing prevalence of engineered nanomaterials (ENMs) in consumer products, their toxicity profiles remain to be elucidated. ENM physicochemical characteristics (PCC) are known to influence ENM behavior, however the mechanisms of these effects have not been quantified. Further confounding the question of how the PCC influence behavior is the inclusion of structural and molecular descriptors in modeling schema that minimize the effects of PCC on the toxicological endpoints. In this work, we analyze ENM physico-chemical measurements that have not previously been studied within a developmental toxicity framework using an embryonic zebrafish model. In testing a panel of diverse ENMs to build a consensus model, we found nonlinear relationships between any singular PCC and bioactivity. By using a machine learning (ML) method to characterize the information content of combinatorial PCC sets, we found that concentration, surface area, shape, and polydispersity can accurately capture the developmental toxicity profile of ENMs with consideration to whole-organism effects.

摘要

尽管工程纳米材料(ENM)在消费品中的普及率不断上升,但其毒性特征仍有待阐明。已知ENM的物理化学特性(PCC)会影响ENM的行为,然而这些影响的机制尚未得到量化。在建模方案中纳入结构和分子描述符,以尽量减少PCC对毒理学终点的影响,这进一步混淆了PCC如何影响行为的问题。在这项工作中,我们使用胚胎斑马鱼模型分析了以前在发育毒性框架内未研究过的ENM物理化学测量结果。在测试一组不同的ENM以建立共识模型时,我们发现任何单一PCC与生物活性之间存在非线性关系。通过使用机器学习(ML)方法来表征组合PCC集的信息内容,我们发现浓度、表面积、形状和多分散性在考虑全生物体效应的情况下可以准确地捕捉ENM的发育毒性特征。

相似文献

1
Multivariate modeling of engineered nanomaterial features associated with developmental toxicity.
NanoImpact. 2019 Apr;16. doi: 10.1016/j.impact.2019.100185. Epub 2019 Nov 1.
3
Prediction of protein corona on nanomaterials by machine learning using novel descriptors.
NanoImpact. 2020 Jan;17. doi: 10.1016/j.impact.2020.100207. Epub 2020 Jan 16.
5
Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements.
Environ Sci Technol. 2014 Apr 15;48(8):4226-46. doi: 10.1021/es4052999. Epub 2014 Mar 27.
6
Ecophysiological perspectives on engineered nanomaterial toxicity in fish and crustaceans.
Comp Biochem Physiol C Toxicol Pharmacol. 2017 Mar;193:30-41. doi: 10.1016/j.cbpc.2016.12.007. Epub 2016 Dec 23.
7
Physicochemical properties determine nanomaterial cellular uptake, transport, and fate.
Acc Chem Res. 2013 Mar 19;46(3):622-31. doi: 10.1021/ar300031y. Epub 2012 Aug 14.
8
In silico analysis of nanomaterials hazard and risk.
Acc Chem Res. 2013 Mar 19;46(3):802-12. doi: 10.1021/ar300049e. Epub 2012 Nov 8.
9
Environmental behavior of engineered nanomaterials in porous media: a review.
J Hazard Mater. 2016 May 15;309:133-50. doi: 10.1016/j.jhazmat.2016.02.006. Epub 2016 Feb 3.
10
Mapping the biological oxidative damage of engineered nanomaterials.
Small. 2013 May 27;9(9-10):1853-65. doi: 10.1002/smll.201201995. Epub 2013 Feb 19.

引用本文的文献

1
Investigation of Cell Damage Induced by Silver Nanoparticles in a Model Cell System.
Pharmaceutics. 2025 Mar 21;17(4):398. doi: 10.3390/pharmaceutics17040398.
2
Unveiling protein corona composition: predicting with resampling embedding and machine learning.
Regen Biomater. 2023 Dec 12;11:rbad082. doi: 10.1093/rb/rbad082. eCollection 2024.
3
Application of Computing as a High-Practicability and -Efficiency Auxiliary Tool in Nanodrugs Discovery.
Pharmaceutics. 2023 Mar 25;15(4):1064. doi: 10.3390/pharmaceutics15041064.
5
The Challenges of 21st Century Neurotoxicology: The Case of Neurotoxicology Applied to Nanomaterials.
Front Toxicol. 2021 Feb 18;3:629256. doi: 10.3389/ftox.2021.629256. eCollection 2021.

本文引用的文献

3
The effects of silver nanomaterial shape and size on toxicity to Caenorhabditis elegans in soil media.
Chemosphere. 2019 Jan;215:50-56. doi: 10.1016/j.chemosphere.2018.09.177. Epub 2018 Oct 3.
5
Formation of a protein corona influences the biological identity of nanomaterials.
Rep Pract Oncol Radiother. 2018 Jul-Aug;23(4):300-308. doi: 10.1016/j.rpor.2018.05.005. Epub 2018 May 28.
6
Synergistic Toxicity Produced by Mixtures of Biocompatible Gold Nanoparticles and Widely Used Surfactants.
ACS Nano. 2018 Jun 26;12(6):5312-5322. doi: 10.1021/acsnano.8b00036. Epub 2018 May 16.
7
Nanoparticle Exposure and Hormetic Dose-Responses: An Update.
Int J Mol Sci. 2018 Mar 10;19(3):805. doi: 10.3390/ijms19030805.
9
In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape.
Nanoscale. 2018 Jan 18;10(3):1256-1264. doi: 10.1039/c7nr08322j.
10
Decision tree models to classify nanomaterials according to the DF4nanoGrouping scheme.
Nanotoxicology. 2018 Feb;12(1):1-17. doi: 10.1080/17435390.2017.1415388. Epub 2017 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验