Division of Rheumatology, Mayo Clinic, Rochester, Minnesota, USA.
Division of Digital Health Sciences, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA.
J Am Med Inform Assoc. 2020 Apr 1;27(4):601-605. doi: 10.1093/jamia/ocaa014.
The study sought to determine the dependence of the Electronic Medical Records and Genomics (eMERGE) rheumatoid arthritis (RA) algorithm on both RA and electronic health record (EHR) duration.
Using a population-based cohort from the Mayo Clinic Biobank, we identified 497 patients with at least 1 RA diagnosis code. RA case status was manually determined using validated criteria for RA. RA duration was defined as time from first RA code to the index date of biobank enrollment. To simulate EHR duration, various years of EHR lookback were applied, starting at the index date and going backward. Model performance was determined by sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve (AUC).
The eMERGE algorithm performed well in this cohort, with overall sensitivity 53%, specificity 99%, positive predictive value 97%, negative predictive value 74%, and AUC 76%. Among patients with RA duration <2 years, sensitivity and AUC were only 9% and 54%, respectively, but increased to 71% and 85% among patients with RA duration >10 years. Longer EHR lookback also improved model performance up to a threshold of 10 years, in which sensitivity reached 52% and AUC 75%. However, optimal EHR lookback varied by RA duration; an EHR lookback of 3 years was best able to identify recently diagnosed RA cases.
eMERGE algorithm performance improves with longer RA duration as well as EHR duration up to 10 years, though shorter EHR lookback can improve identification of recently diagnosed RA cases.
本研究旨在确定电子病历和基因组学(eMERGE)类风湿关节炎(RA)算法对 RA 和电子健康记录(EHR)持续时间的依赖性。
利用来自梅奥诊所生物库的基于人群的队列,我们确定了 497 例至少有 1 例 RA 诊断代码的患者。RA 病例状态使用 RA 的验证标准手动确定。RA 持续时间定义为从首次 RA 代码到生物库入组的索引日期的时间。为了模拟 EHR 持续时间,从索引日期开始向后应用了各种 EHR 回溯年。通过灵敏度、特异性、阳性预测值、阴性预测值和曲线下面积(AUC)来确定模型性能。
eMERGE 算法在该队列中表现良好,总灵敏度为 53%,特异性为 99%,阳性预测值为 97%,阴性预测值为 74%,AUC 为 76%。在 RA 持续时间<2 年的患者中,灵敏度和 AUC 分别仅为 9%和 54%,但在 RA 持续时间>10 年的患者中分别增加到 71%和 85%。更长的 EHR 回溯也提高了模型性能,直到 10 年的阈值,在此阈值下,灵敏度达到 52%,AUC 为 75%。然而,最佳的 EHR 回溯因 RA 持续时间而异;EHR 回溯 3 年最能识别最近诊断的 RA 病例。
eMERGE 算法的性能随着 RA 持续时间以及 EHR 持续时间的延长(长达 10 年)而提高,尽管较短的 EHR 回溯可以提高最近诊断的 RA 病例的识别能力。