Suppr超能文献

通过迁移学习从一个小的、不平衡的和经病理证实的数据集预测不必要的结节活检。

Predicting Unnecessary Nodule Biopsies from a Small, Unbalanced, and Pathologically Proven Dataset by Transfer Learning.

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, 110169, People's Republic of China.

出版信息

J Digit Imaging. 2020 Jun;33(3):685-696. doi: 10.1007/s10278-019-00306-z.

Abstract

This study explores an automatic diagnosis method to predict unnecessary nodule biopsy from a small, unbalanced, and pathologically proven database. The automatic diagnosis method is based on a convolutional neural network (CNN) model. Because of the small and unbalanced samples, the presented method aims to improve the transfer learning capability via the VGG16 architecture and optimize the related transfer learning parameters. For comparison purpose, a traditional machine learning method is implemented, which extracts the texture features and classifies the features by support vector machine (SVM). The database includes 68 biopsied nodules, 16 are pathologically proven benign and the remaining 52 are malignant. To consider the volumetric data by the CNN model, each image slice from each nodule volume is selected randomly until all image slices of each nodule are utilized. The leave-one-out and 10-folder cross validations are applied to train and test the randomly selected 68 image slices (one image slice from one nodule) in each experiment, respectively. The averages over all the experimental outcomes are the final results. The experiments revealed that the features from both the medical and the natural images share the similarity of focusing on simpler and less-abstract objects, leading to the conclusion that not the more the transfer convolutional layers, the better the classification results. Transfer learning from other larger datasets can supply additional information to small and unbalanced datasets to improve the classification performance. The presented method has shown the potential to adapt CNN architecture to improve the prediction of unnecessary nodule biopsy from small, unbalanced, and pathologically proven volumetric dataset.

摘要

本研究探讨了一种自动诊断方法,以从一个小、不平衡且经病理证实的数据库中预测不必要的结节活检。该自动诊断方法基于卷积神经网络(CNN)模型。由于样本量小且不平衡,本方法旨在通过 VGG16 架构提高迁移学习能力,并优化相关迁移学习参数。为了进行比较,实现了一种传统的机器学习方法,该方法提取纹理特征,并通过支持向量机(SVM)对特征进行分类。该数据库包含 68 个活检结节,其中 16 个经病理证实为良性,其余 52 个为恶性。为了通过 CNN 模型考虑体积数据,从每个结节体积中随机选择每个图像切片,直到利用每个结节的所有图像切片。在每个实验中,分别应用留一法和 10 折交叉验证来训练和测试随机选择的 68 个图像切片(一个结节的一个图像切片)。所有实验结果的平均值为最终结果。实验表明,来自医学图像和自然图像的特征都具有关注更简单、更不抽象的对象的相似性,从而得出结论,不是更多的转移卷积层,分类结果就越好。从其他更大的数据集进行迁移学习可以为小、不平衡且经病理证实的体积数据集提供额外的信息,以提高分类性能。所提出的方法已显示出适应 CNN 架构的潜力,以提高从小、不平衡且经病理证实的体积数据集预测不必要的结节活检的能力。

相似文献

5
Agile convolutional neural network for pulmonary nodule classification using CT images.基于 CT 图像的肺结节分类的敏捷卷积神经网络。
Int J Comput Assist Radiol Surg. 2018 Apr;13(4):585-595. doi: 10.1007/s11548-017-1696-0. Epub 2018 Feb 23.

本文引用的文献

2
Cancer statistics, 2019.癌症统计数据,2019 年。
CA Cancer J Clin. 2019 Jan;69(1):7-34. doi: 10.3322/caac.21551. Epub 2019 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验