Suppr超能文献

不同集合域自适应在脑机接口中的应用:一种标签对齐方法。

Different Set Domain Adaptation for Brain-Computer Interfaces: A Label Alignment Approach.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2020 May;28(5):1091-1108. doi: 10.1109/TNSRE.2020.2980299. Epub 2020 Mar 12.

Abstract

A brain-computer interface (BCI) system usually needs a long calibration session for each new subject/task to adjust its parameters, which impedes its transition from the laboratory to real-world applications. Domain adaptation, which leverages labeled data from auxiliary subjects/tasks (source domains), has demonstrated its effectiveness in reducing such calibration effort. Currently, most domain adaptation approaches require the source domains to have the same feature space and label space as the target domain, which limits their applications, as the auxiliary data may have different feature spaces and/or different label spaces. This paper considers different set domain adaptation for BCIs, i.e., the source and target domains have different label spaces. We introduce a practical setting of different label sets for BCIs, and propose a novel label alignment (LA) approach to align the source label space with the target label space. It has three desirable properties: 1) LA only needs as few as one labeled sample from each class of the target subject; 2) LA can be used as a preprocessing step before different feature extraction and classification algorithms; and, 3) LA can be integrated with other domain adaptation approaches to achieve even better performance. Experiments on two motor imagery datasets demonstrated the effectiveness of LA.

摘要

脑机接口 (BCI) 系统通常需要为每个新的主体/任务进行长时间的校准,以调整其参数,这阻碍了它从实验室到实际应用的过渡。利用辅助主体/任务(源域)中的标记数据进行的域自适应已证明可以有效地减少这种校准工作。目前,大多数域自适应方法要求源域与目标域具有相同的特征空间和标签空间,这限制了它们的应用,因为辅助数据可能具有不同的特征空间和/或不同的标签空间。本文考虑了 BCI 的不同设置域自适应,即源域和目标域具有不同的标签空间。我们介绍了 BCI 中不同标签集的实际设置,并提出了一种新的标签对齐 (LA) 方法来对齐源标签空间与目标标签空间。它具有三个理想的特性:1)LA 只需要来自目标主体每个类的一个标记样本;2)LA 可以用作不同特征提取和分类算法之前的预处理步骤;3)LA 可以与其他域自适应方法集成以实现更好的性能。在两个运动想象数据集上的实验证明了 LA 的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验