Suppr超能文献

跨膜蛋白 MaSho1 通过改变蝗绿僵菌的产孢模式来负调控分生孢子产量。

The transmembrane protein MaSho1 negatively regulates conidial yield by shifting the conidiation pattern in Metarhizium acridum.

机构信息

Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.

Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.

出版信息

Appl Microbiol Biotechnol. 2020 May;104(9):4005-4015. doi: 10.1007/s00253-020-10523-0. Epub 2020 Mar 13.

Abstract

Sho1 is an important membrane sensor upstream of the HOG-MAPK signaling pathway, which plays critical roles in osmotic pressure response, growth, and virulence in fungi. Here, a Sho1 homolog (MaSho1), containing four transmembrane domains and one Src homology (SH3) domain, was characterized in Metarhizium acridum, a fungal pathogen of locusts. Targeted gene disruption of MaSho1 impaired cell wall integrity, virulence, and tolerances to UV-B and oxidative stresses, while none of them was affected when the SH3 domain was deleted. Intriguingly, disruption of MaSho1 significantly increased conidial yield, which was not affected in the SH3 domain mutant. Furthermore, it was found that deletion of MaSho1 led to microcycle conidiation of M. acridum on the normal conidiation medium. Deletion of MaSho1 significantly shortened the hyphal cells but had no effect on conidial germination. Digital gene expression profiling during conidiation indicated that differential expression of genes was associated with mycelial development, cell division, and differentiation between the wild type and the MaSho1 mutant. These data suggested that disruption of MaSho1 shifted the conidiation pattern by altering the transcription of genes to inhibit mycelial growth, thereby promoting the conidiation of M. acridum.

摘要

Sho1 是 HOG-MAPK 信号通路的重要膜传感器,在真菌的渗透压响应、生长和毒力中发挥着关键作用。在这里,我们对蝗虫病原真菌绿僵菌中的 Sho1 同源物(MaSho1)进行了研究,MaSho1 包含四个跨膜结构域和一个Src 同源(SH3)结构域。MaSho1 的靶向基因缺失破坏了细胞壁的完整性、毒力以及对 UV-B 和氧化应激的耐受性,而当缺失 SH3 结构域时,这些特性均不受影响。有趣的是,MaSho1 的缺失显著增加了分生孢子的产量,而在 SH3 结构域突变体中则没有受到影响。此外,研究发现 MaSho1 的缺失导致绿僵菌在正常分生孢子培养基上进行微周期分生孢子形成。MaSho1 的缺失显著缩短了菌丝细胞,但对分生孢子的萌发没有影响。在分生孢子形成过程中的数字基因表达谱分析表明,差异表达的基因与野生型和 MaSho1 突变体之间的菌丝发育、细胞分裂和分化有关。这些数据表明,MaSho1 的缺失通过改变基因的转录来抑制菌丝生长,从而促进绿僵菌的分生孢子形成,从而改变了分生孢子形成的模式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验