Genetic Engineering Research Center, School of Life Sciences, Chongqing Universitygrid.190737.b, Chongqing, People's Republic of China.
Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China.
Microbiol Spectr. 2022 Jun 29;10(3):e0053822. doi: 10.1128/spectrum.00538-22. Epub 2022 May 10.
Asexual sporulation is the most common reproduction mode of fungi. Most filamentous fungi have two conidiation patterns, normal conidiation and microcycle conidiation, which may be regulated by nutritional conditions. Nitrogen source can affect the fungal conidiation pattern, but the regulatory mechanism is not fully understood. In this study, we report a C2H2 zinc finger protein, MaNCP1, which has typical transcription factor characteristics and is screened from the subtractive library regulated by nitrate in the entomopathogenic fungus Metarhizium acridum. MaNCP1 and its N-terminal play critical roles in the conidiation pattern shift. Further study shows that MaNCP1 interacts with , which also contributes to the conidiation pattern shift and is involved in the reductive pathway of nitric oxide (NO) synthesis. Intriguingly, the conidiation pattern of the -disruption strain (Δ) can be restored to microcycle conidiation when grown on the microcycle conidiation medium, SYA, supplemented with NO donor or overexpressing in Δ. Here, we reveal that MaNCP1 governs the conidiation pattern shift through regulating the reductive synthesis of NO by physically targeting in M. acridum. This work provides new mechanistic insights into how changes in nitrogen utilization are linked to the regulation of fungal morphological changes. Fungal conidia play important roles in the response to environmental stimuli and evasion of the host immune system. The nitrogen source is one of the main factors affecting shifts in fungal conidiation patterns, but the regulatory mechanism involved is not fully understood. In this work, we report that the C2H2 zinc finger protein, MaNCP1, governs the conidiation pattern shift in M. acridum by targeting the gene, thereby altering the regulation of the reductive pathway for NO synthesis. This work provides further insights into how the nutritional environment can regulate the morphogenesis of filamentous fungi.
无性孢子形成是真菌最常见的繁殖方式。大多数丝状真菌有两种分生孢子形成模式,正常分生孢子形成和微周期分生孢子形成,这可能受到营养条件的调节。氮源可以影响真菌的分生孢子形成模式,但调控机制尚不完全清楚。在这项研究中,我们从昆虫病原真菌绿僵菌的硝酸盐调节的消减文库中筛选到一个 C2H2 锌指蛋白 MaNCP1,它具有典型的转录因子特征。MaNCP1 及其 N 端在分生孢子形成模式转变中起关键作用。进一步的研究表明,MaNCP1 与 相互作用,这也有助于分生孢子形成模式的转变,并参与一氧化氮(NO)合成的还原途径。有趣的是,当在补充有 NO 供体或过表达 的微周期分生孢子形成培养基 SYA 上生长时,Δ 缺失菌株的分生孢子形成模式可以恢复到微周期分生孢子形成。在这里,我们揭示了 MaNCP1 通过物理靶向 来调节 NO 的还原合成,从而控制分生孢子形成模式的转变,在绿僵菌中。这项工作为氮利用的变化如何与真菌形态变化的调控联系起来提供了新的机制见解。真菌分生孢子在应对环境刺激和逃避宿主免疫系统方面发挥着重要作用。氮源是影响真菌分生孢子形成模式转变的主要因素之一,但涉及的调控机制尚不完全清楚。在这项工作中,我们报告 C2H2 锌指蛋白 MaNCP1 通过靶向 基因来控制绿僵菌的分生孢子形成模式转变,从而改变 NO 合成的还原途径的调控。这项工作进一步深入了解了营养环境如何调节丝状真菌的形态发生。