Suppr超能文献

工程化生物材料平台研究纤维化。

Engineered Biomaterial Platforms to Study Fibrosis.

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.

NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.

出版信息

Adv Healthc Mater. 2020 Apr;9(8):e1901682. doi: 10.1002/adhm.201901682. Epub 2020 Mar 17.

Abstract

Many pathologic conditions lead to the development of tissue scarring and fibrosis, which are characterized by the accumulation of abnormal extracellular matrix (ECM) and changes in tissue mechanical properties. Cells within fibrotic tissues are exposed to dynamic microenvironments that may promote or prolong fibrosis, which makes it difficult to treat. Biomaterials have proved indispensable to better understand how cells sense their extracellular environment and are now being employed to study fibrosis in many tissues. As mechanical testing of tissues becomes more routine and biomaterial tools become more advanced, the impact of biophysical factors in fibrosis are beginning to be understood. Herein, fibrosis from a materials perspective is reviewed, including the role and mechanical properties of ECM components, the spatiotemporal mechanical changes that occur during fibrosis, current biomaterial systems to study fibrosis, and emerging biomaterial systems and tools that can further the understanding of fibrosis initiation and progression. This review concludes by highlighting considerations in promoting wide-spread use of biomaterials for fibrosis investigations and by suggesting future in vivo studies that it is hoped will inspire the development of even more advanced biomaterial systems.

摘要

许多病理状况导致组织瘢痕和纤维化的发展,其特征是异常细胞外基质(ECM)的积累和组织力学性质的变化。纤维化组织中的细胞暴露于动态的微环境中,这些微环境可能促进或延长纤维化,从而使纤维化难以治疗。生物材料已被证明对更好地了解细胞如何感知其细胞外环境不可或缺,现在正被用于研究许多组织中的纤维化。随着对组织的力学测试变得更加常规化,以及生物材料工具变得更加先进,生物物理因素在纤维化中的作用开始被理解。本文从材料的角度综述了纤维化,包括 ECM 成分的作用和力学特性、纤维化过程中发生的时空力学变化、用于研究纤维化的当前生物材料系统,以及新兴的生物材料系统和工具,这些可以进一步加深对纤维化起始和进展的理解。本文最后强调了在促进生物材料广泛用于纤维化研究方面需要考虑的问题,并提出了未来希望激发更先进生物材料系统开发的体内研究建议。

相似文献

1
Engineered Biomaterial Platforms to Study Fibrosis.工程化生物材料平台研究纤维化。
Adv Healthc Mater. 2020 Apr;9(8):e1901682. doi: 10.1002/adhm.201901682. Epub 2020 Mar 17.
2
Mast Cell-Biomaterial Interactions and Tissue Repair.肥大细胞-生物材料相互作用与组织修复。
Tissue Eng Part B Rev. 2021 Dec;27(6):590-603. doi: 10.1089/ten.TEB.2020.0275. Epub 2021 Jan 21.
9
Advanced materials technologies to unravel mechanobiological phenomena.用于揭示机械生物学现象的先进材料技术。
Trends Biotechnol. 2024 Feb;42(2):179-196. doi: 10.1016/j.tibtech.2023.08.002. Epub 2023 Sep 3.

引用本文的文献

5
Modelling and targeting mechanical forces in organ fibrosis.器官纤维化中机械力的建模与靶向研究
Nat Rev Bioeng. 2024 Apr;2(4):305-323. doi: 10.1038/s44222-023-00144-3. Epub 2024 Jan 18.
7

本文引用的文献

2
Fiber Density Modulates Cell Spreading in 3D Interstitial Matrix Mimetics.纤维密度调节三维间质基质模拟物中的细胞铺展。
ACS Biomater Sci Eng. 2019 Jun 10;5(6):2965-2975. doi: 10.1021/acsbiomaterials.9b00141. Epub 2019 May 22.
3
Connectivity and plasticity determine collagen network fracture.连接性和可变性决定了胶原蛋白网络的断裂。
Proc Natl Acad Sci U S A. 2020 Apr 14;117(15):8326-8334. doi: 10.1073/pnas.1920062117. Epub 2020 Apr 1.
9
Can Myocardial Fibrosis Be Reversed?心肌纤维化可以逆转吗?
J Am Coll Cardiol. 2019 May 14;73(18):2283-2285. doi: 10.1016/j.jacc.2018.10.094.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验