Suppr超能文献

基于生成对抗网络的合成脑正电子发射断层扫描(PET)图像生成

GAN-based synthetic brain PET image generation.

作者信息

Islam Jyoti, Zhang Yanqing

机构信息

Department of Computer Science, Georgia State University, Atlanta, Georgia, 30302-5060, USA.

出版信息

Brain Inform. 2020 Mar 30;7(1):3. doi: 10.1186/s40708-020-00104-2.

Abstract

In recent days, deep learning technologies have achieved tremendous success in computer vision-related tasks with the help of large-scale annotated dataset. Obtaining such dataset for medical image analysis is very challenging. Working with the limited dataset and small amount of annotated samples makes it difficult to develop a robust automated disease diagnosis model. We propose a novel approach to generate synthetic medical images using generative adversarial networks (GANs). Our proposed model can create brain PET images for three different stages of Alzheimer's disease-normal control (NC), mild cognitive impairment (MCI), and Alzheimer's disease (AD).

摘要

近年来,深度学习技术在大规模标注数据集的帮助下,在与计算机视觉相关的任务中取得了巨大成功。获取用于医学图像分析的此类数据集极具挑战性。使用有限的数据集和少量标注样本进行工作,使得开发一个强大的自动化疾病诊断模型变得困难。我们提出了一种使用生成对抗网络(GAN)生成合成医学图像的新方法。我们提出的模型可以为阿尔茨海默病的三个不同阶段——正常对照(NC)、轻度认知障碍(MCI)和阿尔茨海默病(AD)创建脑部PET图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5736/7105582/9af9ad8f0e57/40708_2020_104_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验