文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

3D 打印生物构建体:基因表达的再生调节。

3D Printed Bioconstructs: Regenerative Modulation for Genetic Expression.

机构信息

Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.

出版信息

Stem Cell Rev Rep. 2021 Aug;17(4):1239-1250. doi: 10.1007/s12015-021-10120-2. Epub 2021 Jan 16.


DOI:10.1007/s12015-021-10120-2
PMID:33454852
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7811392/
Abstract

Layer-by-layer deposition of cells, tissues and similar molecules provided by additive manufacturing techniques such as 3D bioprinting offers safe, biocompatible, effective and inert methods for the production of biological structures and biomimetic scaffolds. 3D bioprinting assisted through computer programmes and software develops mutli-modal nano- or micro-particulate systems such as biosensors, dosage forms or delivery systems and other biological scaffolds like pharmaceutical implants, prosthetics, etc. This review article focuses on the implementation of 3D bioprinting techniques in the gene expression, in gene editing or therapy and in delivery of genes. The applications of 3D printing are extensive and include gene therapy, modulation and expression in cancers, tissue engineering, osteogenesis, skin and vascular regeneration. Inclusion of nanotechnology with genomic bioprinting parameters such as gene conjugated or gene encapsulated 3D printed nanostructures may offer new avenues in the future for efficient and controlled treatment and help in overcoming the limitations faced in conventional methods. Moreover, expansion of the benefits from such techniques is advantageous in real-time delivery or in-situ production of nucleic acids into the host cells. Aspects of 3D bioprinting in gene delivery.

摘要

通过 3D 生物打印等添加剂制造技术进行的细胞、组织和类似分子的逐层沉积,为生物结构和仿生支架的生产提供了安全、生物相容、有效和惰性的方法。通过计算机程序和软件辅助的 3D 生物打印可开发出多模式纳米或微颗粒系统,如生物传感器、剂型或给药系统以及其他生物支架,如药物植入物、假肢等。本文综述重点介绍了 3D 生物打印技术在基因表达、基因编辑或治疗以及基因传递中的应用。3D 打印的应用非常广泛,包括基因治疗、癌症中的调节和表达、组织工程、成骨、皮肤和血管再生。将纳米技术与基因组生物打印参数(如基因偶联或基因包封的 3D 打印纳米结构)结合使用,可能为未来高效和控制治疗提供新途径,并有助于克服传统方法面临的局限性。此外,此类技术的效益扩展有利于实时递送至宿主细胞内或原位生产核酸。3D 生物打印在基因传递方面的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4860/7811392/72b3d03296f9/12015_2021_10120_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4860/7811392/111a855c3dfb/12015_2021_10120_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4860/7811392/7dd4cabbd723/12015_2021_10120_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4860/7811392/81d17aa551fb/12015_2021_10120_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4860/7811392/1078bcd838f3/12015_2021_10120_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4860/7811392/72b3d03296f9/12015_2021_10120_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4860/7811392/111a855c3dfb/12015_2021_10120_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4860/7811392/7dd4cabbd723/12015_2021_10120_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4860/7811392/81d17aa551fb/12015_2021_10120_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4860/7811392/1078bcd838f3/12015_2021_10120_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4860/7811392/72b3d03296f9/12015_2021_10120_Fig4_HTML.jpg

相似文献

[1]
3D Printed Bioconstructs: Regenerative Modulation for Genetic Expression.

Stem Cell Rev Rep. 2021-8

[2]
Advances on Bone Substitutes through 3D Bioprinting.

Int J Mol Sci. 2020-9-23

[3]
Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration.

Adv Drug Deliv Rev. 2021-7

[4]
3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.

Mater Sci Eng C Mater Biol Appl. 2020-7

[5]
Collagen-based bioinks for hard tissue engineering applications: a comprehensive review.

J Mater Sci Mater Med. 2019-3-6

[6]
Advancing bioinks for 3D bioprinting using reactive fillers: A review.

Acta Biomater. 2020-9-1

[7]
Nanomaterials for bioprinting: functionalization of tissue-specific bioinks.

Essays Biochem. 2021-8-10

[8]
Lithography-Based 3D Bioprinting and Bioinks for Bone Repair and Regeneration.

ACS Biomater Sci Eng. 2021-3-8

[9]
Three-Dimensional Bioprinting of Decellularized Extracellular Matrix-Based Bioinks for Tissue Engineering.

Molecules. 2022-5-26

[10]
3D bioprinting in cardiac tissue engineering.

Theranostics. 2021

引用本文的文献

[1]
Obesity and Heart Failure: Mechanistic Insights and the Regulatory Role of MicroRNAs.

Genes (Basel). 2025-5-28

[2]
Harnessing native blueprints for designing bioinks to bioprint functional cardiac tissue.

iScience. 2025-1-23

[3]
Engineering gene-activated bioprinted scaffolds for enhancing articular cartilage repair.

Mater Today Bio. 2024-11-19

[4]
Effective and new technologies in kidney tissue engineering.

Front Bioeng Biotechnol. 2024-10-16

[5]
Strategies for developing 3D printed ovarian model for restoring fertility.

Clin Transl Sci. 2024-7

[6]
Trials and Tribulations of MicroRNA Therapeutics.

Int J Mol Sci. 2024-1-25

[7]
Empowering Precision Medicine: The Impact of 3D Printing on Personalized Therapeutic.

AAPS PharmSciTech. 2023-11-14

[8]
Advancing Dentistry through Bioprinting: Personalization of Oral Tissues.

J Funct Biomater. 2023-10-20

[9]
Osteogenesis Enhancement with 3D Printed Gene-Activated Sodium Alginate Scaffolds.

Gels. 2023-4-7

[10]
MicroRNAs with Multiple Targets of Immune Checkpoints, as a Potential Sensitizer for Immune Checkpoint Inhibitors in Breast Cancer Treatment.

Cancers (Basel). 2023-1-29

本文引用的文献

[1]
Development of 3D bioprinting: From printing methods to biomedical applications.

Asian J Pharm Sci. 2020-9

[2]
Spatial alignment of 3D printed scaffolds modulates genotypic expression in pre-osteoblasts.

Mater Lett. 2020-10-1

[3]
Genetically-programmed, mesenchymal stromal cell-laden & mechanically strong 3D bioprinted scaffolds for bone repair.

J Control Release. 2020-9-10

[4]
3D-poly (lactic acid) scaffolds coated with gelatin and mucic acid for bone tissue engineering.

Int J Biol Macromol. 2020-11-1

[5]
In silico design and 3D printing of microfluidic chips for the preparation of size-controllable siRNA nanocomplexes.

Int J Pharm. 2020-6-15

[6]
3D printed structures for delivery of biomolecules and cells: tissue repair and regeneration.

J Mater Chem B. 2016-12-21

[7]
Porous bioprinted constructs in BMP-2 non-viral gene therapy for bone tissue engineering.

J Mater Chem B. 2013-12-28

[8]
3D-Printing of Structure-Controlled Antigen Nanoparticles for Vaccine Delivery.

Biomacromolecules. 2020-6-8

[9]
Fabrication of Muco-Adhesive Oral Films by the 3D Printing of Hydroxypropyl Methylcellulose-Based Catechin-Loaded Formulations.

Biol Pharm Bull. 2019

[10]
3D-bioprinting a genetically inspired cartilage scaffold with GDF5-conjugated BMSC-laden hydrogel and polymer for cartilage repair.

Theranostics. 2019-9-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索