Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA.
Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
Cell Signal. 2020 Aug;72:109619. doi: 10.1016/j.cellsig.2020.109619. Epub 2020 Apr 2.
Biological tubes form in a variety of shapes and sizes. Tubular topology of cells and tissues is a widely recognizable histological feature of multicellular life. Fluid secretion, storage, transport, absorption, exchange, and elimination-processes central to metazoans-hinge on the exquisite tubular architectures of cells, tissues, and organs. In general, the apparent structural and functional complexity of tubular tissues and organs parallels the architectural and biophysical properties of their constitution, i.e., cells and the extracellular matrix (ECM). Together, cellular and ECM dynamics determine the developmental trajectory, topological characteristics, and functional efficacy of biological tubes. In this review of tubulogenesis, we highlight the multifarious roles of ECM dynamics-the less recognized and poorly understood morphogenetic counterpart of cellular dynamics. The ECM is a dynamic, tripartite composite spanning the luminal, abluminal, and interstitial space within the tubulogenic realm. The critical role of ECM dynamics in the determination of shape, size, and function of tubes is evinced by developmental studies across multiple levels-from morphological through molecular-in model tubular organs.
生物管形成各种形状和大小。管状拓扑结构是多细胞生命中广泛识别的组织学特征。流体分泌、储存、运输、吸收、交换和消除过程是后生动物的核心过程,这些过程依赖于细胞、组织和器官的精细管状结构。一般来说,管状组织和器官的明显结构和功能复杂性与它们的构成,即细胞和细胞外基质(ECM)的建筑和生物物理特性相平行。细胞和 ECM 的动态共同决定了生物管的发育轨迹、拓扑特征和功能效果。在这篇关于管状发生的综述中,我们强调了细胞动态的多方面作用——这是细胞动态的较少被认识和理解的形态发生对应物。细胞外基质是一个动态的三部分复合结构,跨越管状发生领域的管腔、基底外侧和间质空间。细胞外基质动态在确定管的形状、大小和功能方面的关键作用,在从形态学到分子学的多个层面的模型管状器官的发育研究中得到了证明。