Suppr超能文献

解析剪接体机器中的信息交换途径。

Decrypting the Information Exchange Pathways across the Spliceosome Machinery.

机构信息

International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy.

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States.

出版信息

J Am Chem Soc. 2020 May 6;142(18):8403-8411. doi: 10.1021/jacs.0c02036. Epub 2020 Apr 22.

Abstract

Intron splicing of a nascent mRNA transcript by spliceosome (SPL) is a hallmark of gene regulation in eukaryotes. SPL is a majestic molecular machine composed of an entangled network of proteins and RNAs that meticulously promotes intron splicing through the formation of eight intermediate complexes. Cross-communication among the critical distal proteins of the SPL assembly is pivotal for fast and accurate directing of the compositional and conformational readjustments necessary to achieve high splicing fidelity. Here, molecular dynamics (MD) simulations of an 800 000 atom model of SPL C complex from yeast and community network analysis enabled us to decrypt the complexity of this huge molecular machine, by identifying the key channels of information transfer across long distances separating key protein components. The reported study represents an unprecedented attempt in dissecting cross-communication pathways within one of the most complex machines of eukaryotic cells, supporting the critical role of Clf1 and Cwc2 splicing cofactors and specific domains of the Prp8 protein as signal conveyors for pre-mRNA maturation. Our findings provide fundamental advances into mechanistic aspects of SPL, providing a conceptual basis for controlling the SPL via small-molecule modulators able to tackle splicing-associated diseases by altering/obstructing information-exchange paths.

摘要

剪接体(SPL)对新生 mRNA 转录本的内含子剪接是真核生物基因调控的标志。SPL 是一种由蛋白质和 RNA 交织而成的复杂分子机器,通过形成 8 个中间复合物,精确地促进内含子剪接。SPL 组装体的关键远端蛋白质之间的交叉通讯对于快速准确地指导完成高剪接保真度所需的组成和构象调整至关重要。在这里,我们通过对酵母 SPL C 复合物的 80 万个原子模型进行分子动力学(MD)模拟和社区网络分析,成功地解析了这个巨大分子机器的复杂性,确定了远距离分隔关键蛋白质组件的关键信息传递通道。该研究代表了在剖析真核细胞中最复杂的机器之一的跨通讯途径方面的前所未有的尝试,支持了 Clf1 和 Cwc2 剪接辅助因子以及 Prp8 蛋白的特定结构域作为前体 mRNA 成熟的信号传递体的关键作用。我们的研究结果为 SPL 的机制方面提供了重要的进展,为通过改变/阻断信息交换路径的小分子调节剂来控制 SPL 提供了概念基础,从而能够治疗与剪接相关的疾病。

相似文献

1
Decrypting the Information Exchange Pathways across the Spliceosome Machinery.解析剪接体机器中的信息交换途径。
J Am Chem Soc. 2020 May 6;142(18):8403-8411. doi: 10.1021/jacs.0c02036. Epub 2020 Apr 22.
2
Atomic-Level Mechanism of Pre-mRNA Splicing in Health and Disease.在健康和疾病中前体 mRNA 剪接的原子水平机制
Acc Chem Res. 2021 Jan 5;54(1):144-154. doi: 10.1021/acs.accounts.0c00578. Epub 2020 Dec 14.
9
The spliceosome: a self-organized macromolecular machine in the nucleus?剪接体:细胞核中的一种自组装大分子机器?
Trends Cell Biol. 2009 Aug;19(8):375-84. doi: 10.1016/j.tcb.2009.05.004. Epub 2009 Jul 17.
10
New insights into the spliceosome by single molecule fluorescence microscopy.利用单分子荧光显微镜深入了解剪接体。
Curr Opin Chem Biol. 2011 Dec;15(6):864-70. doi: 10.1016/j.cbpa.2011.10.010. Epub 2011 Nov 5.

引用本文的文献

6
Connected Component Analysis of Dynamical Perturbation Contact Networks.动态扰动接触网络的连通分量分析。
J Phys Chem B. 2023 Sep 7;127(35):7571-7580. doi: 10.1021/acs.jpcb.3c04592. Epub 2023 Aug 29.
7
RNA-protein complexes and force field polarizability.RNA-蛋白质复合物与力场极化率
Front Chem. 2023 Jun 22;11:1217506. doi: 10.3389/fchem.2023.1217506. eCollection 2023.

本文引用的文献

7
Structural Insights into Nuclear pre-mRNA Splicing in Higher Eukaryotes.高等真核生物核前体 mRNA 剪接的结构见解。
Cold Spring Harb Perspect Biol. 2019 Nov 1;11(11):a032417. doi: 10.1101/cshperspect.a032417.
10
Protospacer Adjacent Motif-Induced Allostery Activates CRISPR-Cas9.间隔基序邻近基序诱导的变构激活 CRISPR-Cas9。
J Am Chem Soc. 2017 Nov 15;139(45):16028-16031. doi: 10.1021/jacs.7b05313. Epub 2017 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验