Centre for Biological Engineering, Loughborough University, Loughborough, UK.
Department of Chemistry, University of Leicester, Leicester, UK; Department of Chemistry, College of Education for Pure Science, University of Mosul, Iraq.
Biosens Bioelectron. 2020 Jun 15;158:112176. doi: 10.1016/j.bios.2020.112176. Epub 2020 Mar 27.
Small molecule detection is of wide interest in clinical and industrial applications. However, its accessibility is still limited as miniaturisation and system integration is challenged in reliability, costs and complexity. Here we combined a 14.3 MHz quartz crystal resonator (QCR), actuated and analysed using a fixed frequency drive (FFD) method, with a nanomolecular imprinted polymer for label-free, realtime detection of N-hexanoyl-L-homoserine lactone (199 Da), a gram-negative bacterial infection biomarker. The lowest concentration detected (1 μM) without any optimisation was comparable with that of a BIAcore SPR system, an expensive laboratory gold standard, with significant enhancement in sensitivity and specificity beyond the state-of-the-art QCR. The analytical formula-based FFD method can potentially allow a multiplexed "QCR-on-chip" technology, bringing a paradigm shift in speed, accessibility and affordability of small molecule detection.
小分子检测在临床和工业应用中具有广泛的应用前景。然而,由于微型化和系统集成在可靠性、成本和复杂性方面受到挑战,其应用仍然受到限制。在这里,我们将 14.3MHz 石英晶体谐振器(QCR)与纳米分子印迹聚合物相结合,用于无标记、实时检测 N-己酰基-L-高丝氨酸内酯(199Da),这是一种革兰氏阴性细菌感染生物标志物。无需任何优化,检测到的最低浓度(1μM)与昂贵的实验室金标准 BIAcore SPR 系统相当,其灵敏度和特异性显著优于现有技术的 QCR。基于分析公式的 FFD 方法可能允许实现“片上 QCR”的技术,从而在小分子检测的速度、可及性和可负担性方面带来范式转变。