Suppr超能文献

利用 b-张量编码提高纤维弥散估计。

Improved fibre dispersion estimation using b-tensor encoding.

机构信息

Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional Magnetic Resonance, Imaging of the Brain (FMRIB), University of Oxford, UK.

Harvard Medical School, Boston, MA, USA; Radiology, Brigham and Women's Hospital, Boston, MA, USA; Clinical Sciences Lund, Lund University, Lund, Sweden.

出版信息

Neuroimage. 2020 Jul 15;215:116832. doi: 10.1016/j.neuroimage.2020.116832. Epub 2020 Apr 10.

Abstract

Measuring fibre dispersion in white matter with diffusion magnetic resonance imaging (MRI) is limited by an inherent degeneracy between fibre dispersion and microscopic diffusion anisotropy (i.e., the diffusion anisotropy expected for a single fibre orientation). This means that estimates of fibre dispersion rely on strong assumptions, such as constant microscopic anisotropy throughout the white matter or specific biophysical models. Here we present a simple approach for resolving this degeneracy using measurements that combine linear (conventional) and spherical tensor diffusion encoding. To test the accuracy of the fibre dispersion when our microstructural model is only an approximation of the true tissue structure, we simulate multi-compartment data and fit this with a single-compartment model. For such overly simplistic tissue assumptions, we show that the bias in fibre dispersion is greatly reduced (~5x) for single-shell linear and spherical tensor encoding data compared with single-shell or multi-shell conventional data. In in-vivo data we find a consistent estimate of fibre dispersion as we reduce the b-value from 3 to 1.5 ms/μm, increase the repetition time, increase the echo time, or increase the diffusion time. We conclude that the addition of spherical tensor encoded data to conventional linear tensor encoding data greatly reduces the sensitivity of the estimated fibre dispersion to the model assumptions of the tissue microstructure.

摘要

用弥散磁共振成像(MRI)测量白质中的纤维离散度受到纤维离散度和微观扩散各向异性(即单纤维方向的预期扩散各向异性)之间固有简并性的限制。这意味着纤维离散度的估计依赖于强烈的假设,例如整个白质的微观各向异性恒定或特定的生物物理模型。在这里,我们提出了一种简单的方法来解决这个问题,该方法使用结合线性(常规)和球形张量扩散编码的测量值。为了测试当我们的微观结构模型只是真实组织结构的近似值时纤维离散度的准确性,我们模拟了多隔间数据并使用单隔间模型对其进行了拟合。对于这种过于简单的组织假设,我们表明与单壳或多壳常规数据相比,单壳线性和球形张量编码数据的纤维离散度偏差大大降低(~5x)。在体内数据中,我们发现当我们将 b 值从 3 降低到 1.5 ms/μm、增加重复时间、增加回波时间或增加扩散时间时,纤维离散度的估计值是一致的。我们的结论是,将球形张量编码数据添加到常规线性张量编码数据中可以大大降低估计纤维离散度对组织微观结构模型假设的敏感性。

相似文献

1
Improved fibre dispersion estimation using b-tensor encoding.利用 b-张量编码提高纤维弥散估计。
Neuroimage. 2020 Jul 15;215:116832. doi: 10.1016/j.neuroimage.2020.116832. Epub 2020 Apr 10.

引用本文的文献

5
What's new and what's next in diffusion MRI preprocessing.弥散磁共振成像预处理的新进展和未来方向。
Neuroimage. 2022 Apr 1;249:118830. doi: 10.1016/j.neuroimage.2021.118830. Epub 2021 Dec 26.
7
Gradient waveform design for tensor-valued encoding in diffusion MRI.张量编码扩散 MRI 的梯度波形设计。
J Neurosci Methods. 2021 Jan 15;348:109007. doi: 10.1016/j.jneumeth.2020.109007. Epub 2020 Nov 23.
8
Estimating Brain Connectivity With Diffusion-Weighted Magnetic Resonance Imaging: Promise and Peril.用弥散加权磁共振成像估计大脑连接:希望与危险。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2020 Sep;5(9):846-854. doi: 10.1016/j.bpsc.2020.04.009. Epub 2020 Apr 27.
9
Joint modelling of diffusion MRI and microscopy.弥散磁共振成像与显微镜联合建模。
Neuroimage. 2019 Nov 1;201:116014. doi: 10.1016/j.neuroimage.2019.116014. Epub 2019 Jul 14.

本文引用的文献

1
Joint modelling of diffusion MRI and microscopy.弥散磁共振成像与显微镜联合建模。
Neuroimage. 2019 Nov 1;201:116014. doi: 10.1016/j.neuroimage.2019.116014. Epub 2019 Jul 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验