Suppr超能文献

通过文本和音频挖掘识别创伤后应激障碍简短折衷心理治疗中的热点。

Recognizing hotspots in Brief Eclectic Psychotherapy for PTSD by text and audio mining.

作者信息

Wiegersma Sytske, Nijdam Mirjam J, van Hessen Arjan J, Truong Khiet P, Veldkamp Bernard P, Olff Miranda

机构信息

Department of Research Methodology, Measurement and Data Analysis, University of Twente, Enschede, Netherlands.

Department of Psychiatry, Amsterdam University Medical Centres, Academic Medical Centre, Amsterdam, Netherlands.

出版信息

Eur J Psychotraumatol. 2020 Mar 17;11(1):1726672. doi: 10.1080/20008198.2020.1726672. eCollection 2020.

Abstract

: Identifying and addressing hotspots is a key element of imaginal exposure in Brief Eclectic Psychotherapy for PTSD (BEPP). Research shows that treatment effectiveness is associated with focusing on these hotspots and that hotspot frequency and characteristics may serve as indicators for treatment success. : This study aims to develop a model to automatically recognize hotspots based on text and speech features, which might be an efficient way to track patient progress and predict treatment efficacy. : A multimodal supervised classification model was developed based on analog tape recordings and transcripts of imaginal exposure sessions of 10 successful and 10 non-successful treatment completers. Data mining and machine learning techniques were used to extract and select text (e.g. words and word combinations) and speech (e.g. speech rate, pauses between words) features that distinguish between 'hotspot' (N = 37) and 'non-hotspot' (N = 45) phases during exposure sessions. : The developed model resulted in a high training performance (mean -score of 0.76) but a low testing performance (mean -score = 0.52). This shows that the selected text and speech features could clearly distinguish between hotspots and non-hotspots in the current data set, but will probably not recognize hotspots from new input data very well. : In order to improve the recognition of new hotspots, the described methodology should be applied to a larger, higher quality (digitally recorded) data set. As such this study should be seen mainly as a proof of concept, demonstrating the possible application and contribution of automatic text and audio analysis to therapy process research in PTSD and mental health research in general.

摘要

识别并处理热点是创伤后应激障碍简短折中心理治疗(BEPP)中想象暴露疗法的关键要素。研究表明,治疗效果与聚焦这些热点相关,且热点出现的频率和特征可作为治疗成功的指标。

本研究旨在开发一种基于文本和语音特征自动识别热点的模型,这可能是追踪患者进展和预测治疗效果的有效方法。

基于10名成功完成治疗者和10名未成功完成治疗者的想象暴露治疗环节的模拟录音及文字记录,开发了一种多模态监督分类模型。运用数据挖掘和机器学习技术,提取并选择在暴露治疗环节中区分“热点”(N = 37)和“非热点”(N = 45)阶段的文本(如单词和单词组合)及语音(如语速、单词间停顿)特征。

所开发的模型在训练时表现良好(平均F1分数为0.76),但在测试时表现不佳(平均F1分数 = 0.52)。这表明所选的文本和语音特征能够在当前数据集中清晰区分热点和非热点,但可能无法很好地从新输入数据中识别热点。

为了提高对新热点的识别能力,应将所描述的方法应用于更大、质量更高(数字录音)的数据集。因此,本研究应主要被视为一种概念验证,展示自动文本和音频分析在创伤后应激障碍治疗过程研究以及一般心理健康研究中的可能应用和贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ad/7144328/8d9c9e1593ec/ZEPT_A_1726672_F0001_B.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验