Eugene Bell Center, Marine Biological Laboratory, Woods Hole, Massachusetts.
Laboratory for Neural Circuit Systems, Institute of Neuroscience, Tokushima Bunri University, Sanuki, Kagawa, Japan.
Biophys J. 2020 May 19;118(10):2366-2384. doi: 10.1016/j.bpj.2020.03.016. Epub 2020 Apr 4.
Intrinsic optical signal (IOS) imaging has been widely used to map the patterns of brain activity in vivo in a label-free manner. Traditional IOS refers to changes in light transmission, absorption, reflectance, and scattering of the brain tissue. Here, we use polarized light for IOS imaging to monitor structural changes of cellular and subcellular architectures due to their neuronal activity in isolated brain slices. To reveal fast spatiotemporal changes of subcellular structures associated with neuronal activity, we developed the instantaneous polarized light microscope (PolScope), which allows us to observe birefringence changes in neuronal cells and tissues while stimulating neuronal activity. The instantaneous PolScope records changes in transmission, birefringence, and slow axis orientation in tissue at a high spatial and temporal resolution using a single camera exposure. These capabilities enabled us to correlate polarization-sensitive IOS with traditional IOS on the same preparations. We detected reproducible spatiotemporal changes in both IOSs at the stratum radiatum in mouse hippocampal slices evoked by electrical stimulation at Schaffer collaterals. Upon stimulation, changes in traditional IOS signals were broadly uniform across the area, whereas birefringence imaging revealed local variations not seen in traditional IOS. Locations with high resting birefringence produced larger stimulation-evoked birefringence changes than those produced at low resting birefringence. Local application of glutamate to the synaptic region in CA1 induced an increase in both transmittance and birefringence signals. Blocking synaptic transmission with inhibitors CNQX (for AMPA-type glutamate receptor) and D-APV (for NMDA-type glutamate receptor) reduced the peak amplitude of the optical signals. Changes in both IOSs were enhanced by an inhibitor of the membranous glutamate transporter, DL-TBOA. Our results indicate that the detection of activity-induced structural changes of the subcellular architecture in dendrites is possible in a label-free manner.
内源光学信号 (IOS) 成像已被广泛用于在无需标记的情况下对活体大脑活动模式进行映射。传统的 IOS 指的是脑组织的光传输、吸收、反射和散射的变化。在这里,我们使用偏振光进行 IOS 成像,以监测由于离体脑片中神经元活动引起的细胞和亚细胞结构的变化。为了揭示与神经元活动相关的亚细胞结构的快速时空变化,我们开发了瞬时偏振光显微镜 (PolScope),它允许我们在刺激神经元活动的同时观察神经元细胞和组织的双折射变化。瞬时 PolScope 使用单次相机曝光以高空间和时间分辨率记录组织中透射率、双折射和慢轴方向的变化。这些功能使我们能够在相同的制剂上对偏振敏感 IOS 和传统 IOS 进行相关。我们在 Schaffer 侧支电刺激诱发的小鼠海马切片的放射状层中检测到两种 IOS 都具有可重复的时空变化。刺激时,传统 IOS 信号的变化在整个区域广泛均匀,而双折射成像则显示了传统 IOS 中未观察到的局部变化。在静息双折射较高的位置,刺激引起的双折射变化大于静息双折射较低的位置。将谷氨酸局部应用于 CA1 的突触区域会引起透射率和双折射信号的增加。用抑制剂 CNQX(用于 AMPA 型谷氨酸受体)和 D-APV(用于 NMDA 型谷氨酸受体)阻断突触传递会降低光学信号的峰值幅度。膜状谷氨酸转运体抑制剂 DL-TBOA 增强了两种 IOS 的变化。我们的结果表明,以无标记的方式检测树突中亚细胞结构的活动诱导的结构变化是可能的。