Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
Angew Chem Int Ed Engl. 2020 Jul 27;59(31):12698-12702. doi: 10.1002/anie.202002740. Epub 2020 May 20.
We report the use of DNA origami nanostructures, functionalized with aptamers, as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner. We test the system against Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) targets. We use direct stochastic optical reconstruction microscopy (dSTORM) and atomic force microscopy (AFM) to characterize the DNA origami nanostructures and structured illumination microscopy (SIM) to assess the binding of the origami to the bacteria. We show that treatment with lysozyme-functionalized origami slows bacterial growth more effectively than treatment with free lysozyme. Our study introduces DNA origami as a tool in the fight against antibiotic resistance, and our results demonstrate the specificity and efficiency of the nanostructure as a drug delivery vehicle.
我们报告了使用 DNA 折纸纳米结构,通过适体功能化,作为一种特定且高效地递送抗菌酶溶菌酶的载体。我们针对革兰氏阳性(枯草芽孢杆菌)和革兰氏阴性(大肠杆菌)靶标测试了该系统。我们使用直接随机光学重建显微镜(dSTORM)和原子力显微镜(AFM)来表征 DNA 折纸纳米结构,并使用结构光照明显微镜(SIM)来评估折纸与细菌的结合。我们表明,用溶菌酶功能化的折纸处理比用游离溶菌酶处理更能有效地减缓细菌生长。我们的研究将 DNA 折纸作为对抗抗生素耐药性的一种工具引入,我们的结果证明了该纳米结构作为药物递送载体的特异性和效率。