Suppr超能文献

用于药物-靶点亲和力预测的词频二肽频率和图卷积网络

Dipeptide Frequency of Word Frequency and Graph Convolutional Networks for DTA Prediction.

作者信息

Wang Xianfang, Liu Yifeng, Lu Fan, Li Hongfei, Gao Peng, Wei Dongqing

机构信息

School of Computer Science and Technology, Henan Institute of Technology, Xinxiang, China.

School of Computer and Information Engineering, Henan Normal University, Xinxiang, China.

出版信息

Front Bioeng Biotechnol. 2020 Apr 3;8:267. doi: 10.3389/fbioe.2020.00267. eCollection 2020.

Abstract

Deep learning is an effective method to capture drug-target binding affinity, but low accuracy is still an obstacle to be overcome. Thus, we propose a novel predictor for drug-target binding affinity based on dipeptide frequency of word frequency encoding and a hybrid graph convolutional network. Word frequency characteristics of natural language are used to improve the frequency characteristics of peptides to express target proteins. For each drug molecules, the five different features of drug atoms and the atomic bond relationships are expressed as graphs. The obtained protein features and graph structure are used as the input of convolution neural network and the input of graph convolution neural network, respectively. A prediction model is established to predict the drug affinity by calculating the hidden relationship. In the KIBA data set test experiment, the consistency coefficient of the model is 0.901, which is 0.01 higher than the existing model, and the MSE (mean square error) of the model is 0.126, which is 5% lower than the existing model. In Davis data set test experiment, the consistency coefficient of the model is 0.895, which is 0.006 higher than the existing model, and the MSE of the model is 0.220, which is 4% lower than the existing model. These results show that our proposed method can not only predict the affinity better than those existing models, but also outperform unitary deep learning approaches.

摘要

深度学习是一种捕捉药物 - 靶点结合亲和力的有效方法,但低准确率仍是一个有待克服的障碍。因此,我们基于词频编码的二肽频率和混合图卷积网络,提出了一种用于预测药物 - 靶点结合亲和力的新型预测器。利用自然语言的词频特征来改善肽段的频率特征以表达靶蛋白。对于每个药物分子,将药物原子的五种不同特征和原子键关系表示为图。所获得的蛋白质特征和图结构分别用作卷积神经网络的输入和图卷积神经网络的输入。通过计算隐藏关系建立预测模型来预测药物亲和力。在KIBA数据集测试实验中,该模型的一致性系数为0.901,比现有模型高0.01,模型的均方误差(MSE)为0.126,比现有模型低5%。在Davis数据集测试实验中,该模型的一致性系数为0.895,比现有模型高0.006,模型的MSE为0.220,比现有模型低4%。这些结果表明,我们提出的方法不仅能比现有模型更好地预测亲和力,而且优于单一的深度学习方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da77/7147459/362f34ae9f26/fbioe-08-00267-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验