Lichtenberg D, Ragimova S, Bor A, Almog S, Vinkler C, Kalina M, Peled Y, Halpern Z
Department of Physiology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel.
Biophys J. 1988 Dec;54(6):1013-25. doi: 10.1016/S0006-3495(88)83039-X.
The maximal equilibrium solubility of cholesterol in mixtures of phosphatidylcholine (PC)1 and bile salts depends on the cholesterol/PC ratio (Rc) and on the effective ratio (Re) between nonmonomeric bile salts and the sum (CT) of PC and cholesterol concentrations (Carey and Small, 1978; Lichtenberg et al., 1984). By contrast, the concentration of bile salts required for solubilization of liposomes made of PC and cholesterol does not depend on Rc (Lichtenberg et al., 1984 and 1988). Thus, for Rc greater than 0.4, solubilization of the PC-cholesterol liposomes yields PC-cholesterol-bile salts mixed micellar systems which are supersaturated with cholesterol. In these metastable systems, the mixed micelles spontaneously undergo partial revesiculation followed by crystallization of cholesterol. The rate of the latter processes depends upon Rc, Re, and CT. For any given Rc and Re, the rate of revesiculation increases dramatically with increasing the lipid concentration CT, reflecting the involvement of many mixed micelles in the formation of each vesicle. The rate also increases, for any given CT and Re, upon increasing the cholesterol to PC ratio, Rc, probably due to the increasing degree of supersaturation. Increasing the cholate to lipid effective ratio, Re, by elevation of cholate concentration at constant Rc and CT has a complex effect on the rate of the revesiculation process. As expected, cholate concentration higher than that required for complete solubilization at equilibrium yields stable mixed micellar systems which do not undergo revesiculation, but for lower cholate concentrations decreasing the degree of supersaturation (by increasing [cholate]) results in faster revesiculation. We interpret these results in terms of the structure of the mixed micelles; micelles with two or more PC molecules per one molecule of cholesterol are relatively stable but increasing the bile salt concentration may cause dissociation of such 1:2 cholesterol:PC complexes, hence reducing the stability of the mixed micellar dispersions. The instability of PC-cholesterol-cholate mixed systems with intermediary range of cholate to lipids ratio may be significant to gallbladder stone formation as: (a) biliary bile contains PC-cholesterol vesicles which may be, at least partially, solubilized by bile salts during the process of bile concentration in the gallbladder, resulting in mixtures similar to our model systems; and (b) the bile composition of cholesterol gallstone patients is within an intermediary range of bile salts to lipids ratio.
胆固醇在磷脂酰胆碱(PC)1与胆盐混合物中的最大平衡溶解度取决于胆固醇/PC比例(Rc)以及非单体胆盐与PC和胆固醇浓度总和(CT)之间的有效比例(Re)(Carey和Small,1978年;Lichtenberg等人,1984年)。相比之下,由PC和胆固醇制成的脂质体溶解所需的胆盐浓度并不取决于Rc(Lichtenberg等人,1984年和1988年)。因此,当Rc大于0.4时,PC - 胆固醇脂质体的溶解会产生胆固醇过饱和的PC - 胆固醇 - 胆盐混合胶束系统。在这些亚稳系统中,混合胶束会自发地部分重新形成囊泡,随后胆固醇结晶。后一过程的速率取决于Rc、Re和CT。对于任何给定的Rc和Re,重新形成囊泡的速率会随着脂质浓度CT的增加而急剧增加,这反映了许多混合胶束参与每个囊泡的形成。对于任何给定的CT和Re,随着胆固醇与PC比例(Rc)的增加,速率也会增加,这可能是由于过饱和度增加所致。在恒定的Rc和CT下,通过提高胆酸盐浓度来增加胆酸盐与脂质的有效比例(Re),对重新形成囊泡过程的速率有复杂的影响。正如预期的那样,高于平衡时完全溶解所需浓度的胆酸盐会产生稳定的混合胶束系统,不会发生重新形成囊泡的现象,但对于较低的胆酸盐浓度,降低过饱和度(通过增加[胆酸盐])会导致更快的重新形成囊泡。我们根据混合胶束的结构来解释这些结果;每一个胆固醇分子含有两个或更多PC分子的胶束相对稳定,但增加胆盐浓度可能会导致这种1:2胆固醇:PC复合物的解离,从而降低混合胶束分散体的稳定性。PC - 胆固醇 - 胆酸盐混合系统在胆酸盐与脂质比例的中间范围内的不稳定性可能对胆囊结石的形成具有重要意义,原因如下:(a)胆汁中含有PC - 胆固醇囊泡,在胆囊胆汁浓缩过程中,这些囊泡可能至少部分地被胆盐溶解,从而产生类似于我们模型系统的混合物;(b)胆固醇结石患者的胆汁成分处于胆盐与脂质比例的中间范围内。