Suppr超能文献

小分子 T1 弛豫时间估算的计算流程。

Computational pipeline for estimation of small-molecule T1 relaxation times.

机构信息

Department of Radiology, Mayo Clinic Health System - Northwest Wisconsin, Eau Claire, WI, United States; Penn Image-Guided Interventions Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States.

Penn Image-Guided Interventions Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; Functional and Metabolic Imaging Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, School of Engineering, University of Pennsylvania, Philadelphia, PA, United States.

出版信息

J Magn Reson. 2020 May;314:106733. doi: 10.1016/j.jmr.2020.106733. Epub 2020 Apr 18.

Abstract

Molecular imaging of biologic molecules and cellular processes is increasingly accessible through hyperpolarization of chemically-equivalent stable isotopes, most commonly C. However, many molecules are poor candidates for imaging due to their biophysical properties, particularly short spin-lattice relaxation times (T). The inability to consistently predict the T from molecular structure, lack of experimental data for many biologically-relevant molecules and the high cost of developing probes can limit the development of hyperpolarized probes. We describe an in silico pipeline for modeling the estimated T of molecules of interest in order to address this deficiency. Applying a hybrid approach that incorporates molecular dynamics as well as quantum mechanics, this pipeline estimated T values that closely matched empirically determined values providing proof-of-principle that this approach may be used to facilitate MR probe development.

摘要

通过化学等价稳定同位素(最常见的是 C)的极化,可以越来越容易地对生物分子和细胞过程进行分子成像。然而,由于其生物物理特性,特别是短自旋晶格弛豫时间(T),许多分子都不是成像的理想候选者。由于无法从分子结构中一致预测 T,许多与生物学相关的分子缺乏实验数据,以及开发探针的高成本,可能会限制极化探针的开发。我们描述了一种用于模拟感兴趣分子的估计 T 的计算流程,以解决这一不足。该流程采用混合方法,结合分子动力学和量子力学,估计 T 值,与实验确定的值非常吻合,这证明了该方法可用于促进磁共振探针的开发。

相似文献

1
Computational pipeline for estimation of small-molecule T1 relaxation times.小分子 T1 弛豫时间估算的计算流程。
J Magn Reson. 2020 May;314:106733. doi: 10.1016/j.jmr.2020.106733. Epub 2020 Apr 18.
6
Field dependence of T1 for hyperpolarized [1-13C]pyruvate.极化 [1-13C]丙酮酸 T1 的场依赖性。
Contrast Media Mol Imaging. 2013 Jan-Feb;8(1):57-62. doi: 10.1002/cmmi.1494.

引用本文的文献

本文引用的文献

7
The Warburg Effect: How Does it Benefit Cancer Cells?瓦伯格效应:它如何使癌细胞获益?
Trends Biochem Sci. 2016 Mar;41(3):211-218. doi: 10.1016/j.tibs.2015.12.001. Epub 2016 Jan 5.
8
Developing MR probes for molecular imaging.开发用于分子成像的磁共振探针。
Adv Cancer Res. 2014;124:297-327. doi: 10.1016/B978-0-12-411638-2.00009-4.
9
Hyperpolarized 13C MR for molecular imaging of prostate cancer.用于前列腺癌分子成像的超极化13C磁共振成像
J Nucl Med. 2014 Oct;55(10):1567-72. doi: 10.2967/jnumed.114.141705. Epub 2014 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验