Manakhov Anton, Permyakova Elizaveta, Ershov Sergey, Miroshnichenko Svetlana, Pykhtina Mariya, Beklemishev Anatoly, Kovalskii Andrey, Solovieva Anastasiya
Research Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russia.
Laboratory for the Physics of Advanced Materials (LPM), Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg.
Nanomaterials (Basel). 2020 May 2;10(5):879. doi: 10.3390/nano10050879.
The immobilization of viable proteins is an important step in engineering efficient scaffolds for regenerative medicine. For example, angiogenin, a vascular growth factor, can be considered a neurotrophic factor, influencing the neurogenesis, viability, and migration of neurons. Angiogenin shows an exceptional combination of angiogenic, neurotrophic, neuroprotective, antibacterial, and antioxidant activities. Therefore, this protein is a promising molecule that can be immobilized on carriers used for tissue engineering, particularly for diseases that are complicated by neurotrophic and vascular disorders. Another highly important and viable protein is apoliprotein A1. Nevertheless, the immobilization of these proteins onto promising biodegradable nanofibers has not been tested before. In this work, we carefully studied the immobilization of human recombinant angiogenin and apoliprotein A1 onto plasma-coated nanofibers. We developed a new methodology for the quantification of the protein density of these proteins using X-ray photoelectron spectroscopy (XPS) and modeled the XPS data for angiogenin and apoliprotein A1 (Apo-A1). These findings were also confirmed by the analysis of immobilized Apo-A1 using fluorescent microscopy. The presented methodology was validated by the analysis of fibronectin on the surface of plasma-coated poly(ε-caprolactone) (PCL) nanofibers. This methodology can be expanded for other proteins and it should help to quantify the density of proteins on surfaces using routine XPS data treatment.
固定活性蛋白是构建用于再生医学的高效支架的重要步骤。例如,血管生成素作为一种血管生长因子,可被视为一种神经营养因子,影响神经元的神经发生、活力和迁移。血管生成素具有血管生成、神经营养、神经保护、抗菌和抗氧化活性的特殊组合。因此,这种蛋白质是一种有前途的分子,可固定在用于组织工程的载体上,特别是对于伴有神经营养和血管紊乱的疾病。另一种非常重要且具有活性的蛋白质是载脂蛋白A1。然而,此前尚未测试过将这些蛋白质固定在有前景的可生物降解纳米纤维上的情况。在这项工作中,我们仔细研究了将人重组血管生成素和载脂蛋白A1固定在等离子体涂层纳米纤维上的情况。我们开发了一种使用X射线光电子能谱(XPS)定量这些蛋白质密度的新方法,并对血管生成素和载脂蛋白A1(Apo-A1)的XPS数据进行了建模。使用荧光显微镜对固定化的Apo-A1进行分析也证实了这些发现。通过对等离子体涂层聚(ε-己内酯)(PCL)纳米纤维表面的纤连蛋白进行分析,验证了所提出的方法。该方法可扩展用于其他蛋白质,并且应该有助于使用常规XPS数据处理来定量表面蛋白质的密度。