Captur Gabriella, Bhandari Abhiyan, Brühl Rüdiger, Ittermann Bernd, Keenan Kathryn E, Yang Ye, Eames Richard J, Benedetti Giulia, Torlasco Camilla, Ricketts Lewis, Boubertakh Redha, Fatih Nasri, Greenwood John P, Paulis Leonie E M, Lawton Chris B, Bucciarelli-Ducci Chiara, Lamb Hildo J, Steeds Richard, Leung Steve W, Berry Colin, Valentin Sinitsyn, Flett Andrew, de Lange Charlotte, DeCobelli Francesco, Viallon Magalie, Croisille Pierre, Higgins David M, Greiser Andreas, Pang Wenjie, Hamilton-Craig Christian, Strugnell Wendy E, Dresselaers Tom, Barison Andrea, Dawson Dana, Taylor Andrew J, Mongeon François-Pierre, Plein Sven, Messroghli Daniel, Al-Mallah Mouaz, Grieve Stuart M, Lombardi Massimo, Jang Jihye, Salerno Michael, Chaturvedi Nish, Kellman Peter, Bluemke David A, Nezafat Reza, Gatehouse Peter, Moon James C
UCL Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK.
UCL MRC Unit for Lifelong Health and Ageing, University College London, 1-19 Torrington Place, London, WC1E 7BH, UK.
J Cardiovasc Magn Reson. 2020 May 7;22(1):31. doi: 10.1186/s12968-020-00613-3.
The T Mapping and Extracellular volume (ECV) Standardization (T1MES) program explored T mapping quality assurance using a purpose-developed phantom with Food and Drug Administration (FDA) and Conformité Européenne (CE) regulatory clearance. We report T measurement repeatability across centers describing sequence, magnet, and vendor performance.
Phantoms batch-manufactured in August 2015 underwent 2 years of structural imaging, B and B, and "reference" slow T testing. Temperature dependency was evaluated by the United States National Institute of Standards and Technology and by the German Physikalisch-Technische Bundesanstalt. Center-specific T mapping repeatability (maximum one scan per week to minimum one per quarter year) was assessed over mean 358 (maximum 1161) days on 34 1.5 T and 22 3 T magnets using multiple T mapping sequences. Image and temperature data were analyzed semi-automatically. Repeatability of serial T was evaluated in terms of coefficient of variation (CoV), and linear mixed models were constructed to study the interplay of some of the known sources of T variation.
Over 2 years, phantom gel integrity remained intact (no rips/tears), B and B homogenous, and "reference" T stable compared to baseline (% change at 1.5 T, 1.95 ± 1.39%; 3 T, 2.22 ± 1.44%). Per degrees Celsius, 1.5 T, T (MOLLI 5s(3s)3s) increased by 11.4 ms in long native blood tubes and decreased by 1.2 ms in short post-contrast myocardium tubes. Agreement of estimated T times with "reference" T was similar across Siemens and Philips CMR systems at both field strengths (adjusted R ranges for both field strengths, 0.99-1.00). Over 1 year, many 1.5 T and 3 T sequences/magnets were repeatable with mean CoVs < 1 and 2% respectively. Repeatability was narrower for 1.5 T over 3 T. Within T1MES repeatability for native T was narrow for several sequences, for example, at 1.5 T, Siemens MOLLI 5s(3s)3s prototype number 448B (mean CoV = 0.27%) and Philips modified Look-Locker inversion recovery (MOLLI) 3s(3s)5s (CoV 0.54%), and at 3 T, Philips MOLLI 3b(3s)5b (CoV 0.33%) and Siemens shortened MOLLI (ShMOLLI) prototype 780C (CoV 0.69%). After adjusting for temperature and field strength, it was found that the T mapping sequence and scanner software version (both P < 0.001 at 1.5 T and 3 T), and to a lesser extent the scanner model (P = 0.011, 1.5 T only), had the greatest influence on T across multiple centers.
The T1MES CE/FDA approved phantom is a robust quality assurance device. In a multi-center setting, T mapping had performance differences between field strengths, sequences, scanner software versions, and manufacturers. However, several specific combinations of field strength, sequence, and scanner are highly repeatable, and thus, have potential to provide standardized assessment of T times for clinical use, although temperature correction is required for native T tubes at least.
T 映射与细胞外容积(ECV)标准化(T1MES)项目使用经美国食品药品监督管理局(FDA)和欧洲符合性认证(CE)批准的特制体模探索 T 映射质量保证。我们报告了跨中心的 T 测量重复性,描述了序列、磁体和供应商的性能。
2015 年 8 月批量生产的体模进行了 2 年的结构成像、B 及 B′成像以及“参考”慢速 T 检测。温度依赖性由美国国家标准与技术研究院及德国联邦物理技术研究院进行评估。使用多种 T 映射序列,在 34 台 1.5T 和 22 台 3T 磁体上,平均 358 天(最多 1161 天)内评估特定中心的 T 映射重复性(每周最多扫描 1 次,最少每季度扫描 1 次)。图像和温度数据进行半自动分析。根据变异系数(CoV)评估连续 T 的重复性,并构建线性混合模型研究一些已知 T 变异来源之间的相互作用。
在 2 年时间里,体模凝胶完整性保持完好(无撕裂),B 及 B′均匀,与基线相比“参考”T 稳定(1.5T 时变化百分比为 1.95±1.39%;3T 时为 2.22±1.44%)。每摄氏度,1.5T 时,长的天然血管管中 T(MOLLI 5s(3s)3s)增加 11.4ms,短的对比剂后心肌管中减少 1.2ms。在两个场强下,西门子和飞利浦 CMR 系统估计的 T 时间与“参考”T 的一致性相似(两个场强下调整后的 R 范围为 0.99 - 1.00)。在 1 年时间里,许多 1.5T 和 3T 序列/磁体具有重复性,平均 CoV 分别<1%和 2%。1.5T 的重复性比 3T 更窄。在 T1MES 内,几种序列的天然 T 重复性较窄,例如,在 1.5T 时,西门子 MOLLI 5s(3s)3s 原型 448B(平均 CoV = 0.27%)和飞利浦改良 Look-Locker 反转恢复(MOLLI)3s(3s)5s(CoV 0.54%),在 3T 时,飞利浦 MOLLI 3b(3s)5b(CoV 0.33%)和西门子缩短 MOLLI(ShMOLLI)原型 780C(CoV 0.69%)。在调整温度和场强后,发现 T 映射序列和扫描仪软件版本(在 1.5T 和 3T 时 P 均<0.001),以及在较小程度上扫描仪型号(仅在 1.5T 时 P = 0.011),对多个中心的 T 影响最大。
T1MES CE/FDA 批准的体模是一种可靠的质量保证设备。在多中心环境中,T 映射在场强、序列、扫描仪软件版本和制造商之间存在性能差异。然而,场强、序列和扫描仪的几种特定组合具有高度重复性,因此,尽管至少天然 T 管需要温度校正,但仍有潜力为临床使用提供标准化的 T 时间评估。