Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
Key Laboratory of Fermentation Engineering (Ministry of Education), College of Biotechnology & Food Science, Hubei University of Technology, Wuhan, 430068, China.
Nat Commun. 2023 Feb 25;14(1):1100. doi: 10.1038/s41467-023-36856-8.
Plant cellulose microfibrils are increasingly employed to produce functional nanofibers and nanocrystals for biomaterials, but their catalytic formation and conversion mechanisms remain elusive. Here, we characterize length-reduced cellulose nanofibers assembly in situ accounting for the high density of amorphous cellulose regions in the natural rice fragile culm 16 (Osfc16) mutant defective in cellulose biosynthesis using both classic and advanced atomic force microscopy (AFM) techniques equipped with a single-molecular recognition system. By employing individual types of cellulases, we observe efficient enzymatic catalysis modes in the mutant, due to amorphous and inner-broken cellulose chains elevated as breakpoints for initiating and completing cellulose hydrolyses into higher-yield fermentable sugars. Furthermore, effective chemical catalysis mode is examined in vitro for cellulose nanofibers conversion into nanocrystals with reduced dimensions. Our study addresses how plant cellulose substrates are digestible and convertible, revealing a strategy for precise engineering of cellulose substrates toward cost-effective biofuels and high-quality bioproducts.
植物纤维素微纤维越来越多地被用于生产功能性纳米纤维和纳米晶体,以用于生物材料,但它们的催化形成和转化机制仍难以捉摸。在这里,我们使用经典和先进的原子力显微镜(AFM)技术,配备单分子识别系统,原位表征了在天然水稻脆性秆 16(Osfc16)突变体中长度缩短的纤维素纳米纤维组装,该突变体在纤维素生物合成中存在缺陷,其特点是无定形纤维素区域密度高。通过使用不同类型的纤维素酶,我们观察到突变体中存在有效的酶催化模式,这是由于无定形和内部断裂的纤维素链作为起始和完成纤维素水解成更高产可发酵糖的断点而升高。此外,还在体外检查了有效化学催化模式,以将纤维素纳米纤维转化为尺寸减小的纳米晶体。我们的研究解决了植物纤维素底物如何可消化和可转化的问题,为精确工程化纤维素底物以生产具有成本效益的生物燃料和高质量生物产品提供了一种策略。