文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有大纵向弛豫率的铜掺杂超小氧化铁纳米颗粒:一锅合成法与体内靶向分子成像

Cu-Doped Extremely Small Iron Oxide Nanoparticles with Large Longitudinal Relaxivity: One-Pot Synthesis and in Vivo Targeted Molecular Imaging.

作者信息

Fernández-Barahona Irene, Gutiérrez Lucía, Veintemillas-Verdaguer Sabino, Pellico Juan, Morales María Del Puerto, Catala Mauro, Del Pozo Miguel A, Ruiz-Cabello Jesús, Herranz Fernando

机构信息

Instituto de Química Médica, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.

Universidad Complutense de Madrid and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.

出版信息

ACS Omega. 2019 Feb 6;4(2):2719-2727. doi: 10.1021/acsomega.8b03004. eCollection 2019 Feb 28.


DOI:10.1021/acsomega.8b03004
PMID:31459508
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6648411/
Abstract

Synthesizing iron oxide nanoparticles for positive contrast in magnetic resonance imaging is the most promising approach to bring this nanomaterial back to the clinical field. The success of this approach depends on several aspects: the longitudinal relaxivity values, the complexity of the synthetic protocol, and the reproducibility of the synthesis. Here, we show our latest results on this goal. We have studied the effect of Cu doping on the physicochemical, magnetic, and relaxometric properties of iron oxide nanoparticles designed to provide positive contrast in magnetic resonance imaging. We have used a one-step, 10 min synthesis to produce nanoparticles with excellent colloidal stability. We have synthesized three different Cu-doped iron oxide nanoparticles showing modest to very large longitudinal relaxivity values. Finally, we have demonstrated the in vivo use of these kinds of nanoparticles both in angiography and targeted molecular imaging.

摘要

合成用于磁共振成像正性对比的氧化铁纳米颗粒是使这种纳米材料重返临床领域最具前景的方法。该方法的成功取决于几个方面:纵向弛豫率值、合成方案的复杂性以及合成的可重复性。在此,我们展示了关于这一目标的最新成果。我们研究了铜掺杂对旨在提供磁共振成像正性对比的氧化铁纳米颗粒的物理化学、磁性和弛豫特性的影响。我们采用一步法、10分钟合成来制备具有优异胶体稳定性的纳米颗粒。我们合成了三种不同的铜掺杂氧化铁纳米颗粒,其纵向弛豫率值从中等至非常大。最后,我们证明了这类纳米颗粒在血管造影和靶向分子成像中的体内应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0290/6648411/2bd2d802f5e9/ao-2018-03004x_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0290/6648411/5ca3562adb9a/ao-2018-03004x_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0290/6648411/57775d498c79/ao-2018-03004x_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0290/6648411/f08f5606562c/ao-2018-03004x_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0290/6648411/2047f042cb0a/ao-2018-03004x_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0290/6648411/0ed25492143f/ao-2018-03004x_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0290/6648411/2bd2d802f5e9/ao-2018-03004x_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0290/6648411/5ca3562adb9a/ao-2018-03004x_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0290/6648411/57775d498c79/ao-2018-03004x_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0290/6648411/f08f5606562c/ao-2018-03004x_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0290/6648411/2047f042cb0a/ao-2018-03004x_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0290/6648411/0ed25492143f/ao-2018-03004x_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0290/6648411/2bd2d802f5e9/ao-2018-03004x_0006.jpg

相似文献

[1]
Cu-Doped Extremely Small Iron Oxide Nanoparticles with Large Longitudinal Relaxivity: One-Pot Synthesis and in Vivo Targeted Molecular Imaging.

ACS Omega. 2019-2-6

[2]
Synthesis of 68Ga Core-doped Iron Oxide Nanoparticles for Dual Positron Emission Tomography /(T1)Magnetic Resonance Imaging.

J Vis Exp. 2018-11-20

[3]
Citrate coated iron oxide nanoparticles with enhanced relaxivity for in vivo magnetic resonance imaging of liver fibrosis.

Colloids Surf B Biointerfaces. 2014-5-1

[4]
Fast synthesis and bioconjugation of (68) Ga core-doped extremely small iron oxide nanoparticles for PET/MR imaging.

Contrast Media Mol Imaging. 2016-5

[5]
Continuous growth phenomenon for direct synthesis of monodisperse water-soluble iron oxide nanoparticles with extraordinarily high relaxivity.

Nanoscale. 2020-4-30

[6]
Key Parameters on the Microwave Assisted Synthesis of Magnetic Nanoparticles for MRI Contrast Agents.

Contrast Media Mol Imaging. 2017-12-4

[7]
Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents.

J Am Chem Soc. 2011-7-25

[8]
Magnetic resonance imaging quantification and biodistribution of magnetic nanoparticles using T-enhanced contrast.

J Mater Chem B. 2018-3-14

[9]
One-pot facile synthesis of PEGylated superparamagnetic iron oxide nanoparticles for MRI contrast enhancement.

Mater Sci Eng C Mater Biol Appl. 2014-4-28

[10]
Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement.

Langmuir. 2010-4-20

引用本文的文献

[1]
Periodic table screening for enhanced positive contrast in MRI and uptake in glioblastoma.

Chem Sci. 2024-5-8

[2]
Using small-angle scattering to guide functional magnetic nanoparticle design.

Nanoscale Adv. 2022-1-17

[3]
Iron-Gold Nanoflowers: A Promising Tool for Multimodal Imaging and Hyperthermia Therapy.

Pharmaceutics. 2022-3-14

[4]
Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging.

Bioact Mater. 2021-10-19

[5]
HAP-Multitag, a PET and Positive MRI Contrast Nanotracer for the Longitudinal Characterization of Vascular Calcifications in Atherosclerosis.

ACS Appl Mater Interfaces. 2021-9-29

[6]
Embracing Defects and Disorder in Magnetic Nanoparticles.

Adv Sci (Weinh). 2021-4

[7]
Electrodecoration and Characterization of Superparamagnetic Iron Oxide Nanoparticles with Bioactive Synergistic Nanocopper: Magnetic Hyperthermia-Induced Ionic Release for Anti-Biofilm Action.

Antibiotics (Basel). 2021-1-27

[8]
Magnetic Nanoparticles as MRI Contrast Agents.

Top Curr Chem (Cham). 2020-5-7

[9]
Nanoparticle Drug Delivery Systems for α-Mangostin.

Nanotechnol Sci Appl. 2020-4-1

[10]
Macromolecules with Different Charges, Lengths, and Coordination Groups for the Coprecipitation Synthesis of Magnetic Iron Oxide Nanoparticles as MRI Contrast Agents.

Nanomaterials (Basel). 2019-5-5

本文引用的文献

[1]
Large T contrast enhancement using superparamagnetic nanoparticles in ultra-low field MRI.

Sci Rep. 2018-8-8

[2]
Surface Design of Eu-Doped Iron Oxide Nanoparticles for Tuning the Magnetic Relaxivity.

ACS Appl Mater Interfaces. 2018-7-20

[3]
Dotted Core-Shell Nanoparticles for T -Weighted MRI of Tumors.

Adv Mater. 2018-7-4

[4]
One-Step Fast Synthesis of Nanoparticles for MRI: Coating Chemistry as the Key Variable Determining Positive or Negative Contrast.

Langmuir. 2017-9-18

[5]
The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles.

Sci Rep. 2017-1-3

[6]
Iron Oxide Nanoparticle Based Contrast Agents for Magnetic Resonance Imaging.

Mol Pharm. 2017-5-1

[7]
Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia.

Nanomedicine (Lond). 2016-7

[8]
Fast synthesis and bioconjugation of (68) Ga core-doped extremely small iron oxide nanoparticles for PET/MR imaging.

Contrast Media Mol Imaging. 2016-5

[9]
Manganese doped iron oxide theranostic nanoparticles for combined T1 magnetic resonance imaging and photothermal therapy.

ACS Appl Mater Interfaces. 2015-2-20

[10]
Citrate coated iron oxide nanoparticles with enhanced relaxivity for in vivo magnetic resonance imaging of liver fibrosis.

Colloids Surf B Biointerfaces. 2014-5-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索