Suppr超能文献

计算机辅助 COVID-19 诊断和使用增强 CXR 的深度学习方法比较。

Computer-aided COVID-19 diagnosis and a comparison of deep learners using augmented CXRs.

机构信息

National University of Computer and Emerging Sciences, Lahore, Pakistan.

Forman Christian College, Lahore, Pakistan.

出版信息

J Xray Sci Technol. 2022;30(1):89-109. doi: 10.3233/XST-211047.

Abstract

BACKGROUND

Coronavirus Disease 2019 (COVID-19) is contagious, producing respiratory tract infection, caused by a newly discovered coronavirus. Its death toll is too high, and early diagnosis is the main problem nowadays. Infected people show a variety of symptoms such as fatigue, fever, tastelessness, dry cough, etc. Some other symptoms may also be manifested by radiographic visual identification. Therefore, Chest X-Rays (CXR) play a key role in the diagnosis of COVID-19.

METHODS

In this study, we use Chest X-Rays images to develop a computer-aided diagnosis (CAD) of the disease. These images are used to train two deep networks, the Convolution Neural Network (CNN), and the Long Short-Term Memory Network (LSTM) which is an artificial Recurrent Neural Network (RNN). The proposed study involves three phases. First, the CNN model is trained on raw CXR images. Next, it is trained on pre-processed CXR images and finally enhanced CXR images are used for deep network CNN training. Geometric transformations, color transformations, image enhancement, and noise injection techniques are used for augmentation. From augmentation, we get 3,220 augmented CXRs as training datasets. In the final phase, CNN is used to extract the features of CXR imagery that are fed to the LSTM model. The performance of the four trained models is evaluated by the evaluation techniques of different models, including accuracy, specificity, sensitivity, false-positive rate, and receiver operating characteristic (ROC) curve.

RESULTS

We compare our results with other benchmark CNN models. Our proposed CNN-LSTM model gives superior accuracy (99.02%) than the other state-of-the-art models. Our method to get improved input, helped the CNN model to produce a very high true positive rate (TPR 1) and no false-negative result whereas false negative was a major problem while using Raw CXR images.

CONCLUSIONS

We conclude after performing different experiments that some image pre-processing and augmentation, remarkably improves the results of CNN-based models. It will help a better early detection of the disease that will eventually reduce the mortality rate of COVID.

摘要

背景

新型冠状病毒引发的 2019 年冠状病毒病(COVID-19)具有传染性,会导致呼吸道感染,其病死率过高,目前主要问题是早期诊断。感染者表现出多种症状,如疲劳、发热、味觉丧失、干咳等,其他一些症状也可能通过影像学目视识别表现出来。因此,胸部 X 射线(CXR)在 COVID-19 诊断中起着关键作用。

方法

本研究使用胸部 X 射线图像开发一种用于 COVID-19 的计算机辅助诊断(CAD)系统。这些图像用于训练两个深度网络,卷积神经网络(CNN)和长短期记忆网络(LSTM),后者是一种人工循环神经网络(RNN)。所提出的研究涉及三个阶段。首先,在原始 CXR 图像上训练 CNN 模型。接下来,在预处理的 CXR 图像上进行训练,最后使用增强的 CXR 图像进行深度网络 CNN 训练。使用几何变换、颜色变换、图像增强和噪声注入技术进行增强。从增强中,我们得到了 3220 张增强的 CXR 作为训练数据集。在最后阶段,将 CNN 用于提取 CXR 图像的特征,然后将其输入到 LSTM 模型中。使用不同模型的评估技术评估四个训练模型的性能,包括准确性、特异性、敏感性、假阳性率和接收器工作特性(ROC)曲线。

结果

我们将结果与其他基准 CNN 模型进行了比较。我们提出的 CNN-LSTM 模型的准确率(99.02%)优于其他最先进的模型。我们通过获取改进输入的方法,帮助 CNN 模型产生了非常高的真阳性率(TPR1),而没有假阴性结果,而在使用原始 CXR 图像时,假阴性是一个主要问题。

结论

通过进行不同的实验,我们得出结论,一些图像预处理和增强显著提高了基于 CNN 的模型的结果。这将有助于更好地早期发现疾病,最终降低 COVID 的死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/396f/8842762/0bc1f232ce7f/xst-30-xst211047-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验