Department of Computer Science, Government Bikram College of Commerce, Punjabi University, Patiala, 147001, Punjab, India.
Department of Computer Science and Engineering, MVJ College of Engineering, Bangalore, India.
Interdiscip Sci. 2021 Jun;13(2):260-272. doi: 10.1007/s12539-021-00418-7. Epub 2021 Feb 15.
In the hospital, a limited number of COVID-19 test kits are available due to the spike in cases every day. For this reason, a rapid alternative diagnostic option should be introduced as an automated detection method to prevent COVID-19 spreading among individuals. This article proposes multi-objective optimization and a deep-learning methodology for the detection of infected coronavirus patients with X-rays. J48 decision tree method classifies the deep characteristics of affected X-ray corona images to detect the contaminated patients effectively. Eleven different convolutional neuronal network-based (CNN) models were developed in this study to detect infected patients with coronavirus pneumonia using X-ray images (AlexNet, VGG16, VGG19, GoogleNet, ResNet18, ResNet500, ResNet101, InceptionV3, InceptionResNetV2, DenseNet201 and XceptionNet). In addition, the parameters of the CNN profound learning model are described using an emperor penguin optimizer with several objectives (MOEPO). A broad review reveals that the proposed model can categorise the X-ray images at the correct rates of precision, accuracy, recall, specificity and F1-score. Extensive test results show that the proposed model outperforms competitive models with well-known efficiency metrics. The proposed model is, therefore, useful for the real-time classification of X-ray chest images of COVID-19 disease.
由于每天的病例激增,医院内可用的 COVID-19 检测试剂盒数量有限。出于这个原因,应该引入一种快速替代诊断选择,作为一种自动检测方法,以防止 COVID-19 在个人之间传播。本文提出了一种基于多目标优化和深度学习的 X 射线检测感染冠状病毒患者的方法。J48 决策树方法对受影响 X 射线冠状图像的深度学习特征进行分类,以有效地检测受污染的患者。本研究开发了十一种基于卷积神经网络(CNN)的不同模型,用于使用 X 射线图像检测感染冠状病毒肺炎的患者(AlexNet、VGG16、VGG19、GoogleNet、ResNet18、ResNet500、ResNet101、InceptionV3、InceptionResNetV2、DenseNet201 和 XceptionNet)。此外,使用具有多个目标(MOEPO)的帝企鹅优化器来描述 CNN 深度学习模型的参数。广泛的综述表明,所提出的模型可以以正确的精度、准确性、召回率、特异性和 F1 评分对 X 射线图像进行分类。大量的测试结果表明,所提出的模型在著名的效率指标方面优于竞争模型。因此,该模型可用于 COVID-19 疾病的 X 射线胸部图像的实时分类。