School of Medicine, University of St Andrews, KY16 9TF, St Andrews, UK.
SUPA, School of Physics and Astronomy, University of St Andrews, KY16 9SS, St Andrews, UK.
Commun Biol. 2020 May 14;3(1):236. doi: 10.1038/s42003-020-0915-3.
Tuberculosis (TB) remains a leading cause of death worldwide. Lipid rich, phenotypically antibiotic tolerant, bacteria are more resistant to antibiotics and may be responsible for relapse and the need for long-term TB treatment. We present a microfluidic system that acoustically traps live mycobacteria, M. smegmatis, a model organism for M. tuberculosis. We then perform optical analysis in the form of wavelength modulated Raman spectroscopy (WMRS) on the trapped M. smegmatis for up to eight hours, and also in the presence of isoniazid (INH). The Raman fingerprints of M. smegmatis exposed to INH change substantially in comparison to the unstressed condition. Our work provides a real-time assessment of the impact of INH on the increase of lipids in these mycobacteria, which could render the cells more tolerant to antibiotics. This microfluidic platform may be used to study any microorganism and to dynamically monitor its response to different conditions and stimuli.
结核病(TB)仍然是全球主要的死亡原因。脂质丰富、表型上对抗生素具有耐受性的细菌对抗生素的抵抗力更强,可能是导致复发和需要长期结核病治疗的原因。我们提出了一种微流控系统,可以通过声学捕获活的分枝杆菌,分枝杆菌,分枝杆菌的模型生物。然后,我们对捕获的分枝杆菌进行了长达 8 小时的波长调制拉曼光谱(WMRS)的光学分析,同时也存在异烟肼(INH)。与未受压力的条件相比,暴露于 INH 的分枝杆菌的拉曼指纹发生了显著变化。我们的工作实时评估了 INH 对这些分枝杆菌中脂质增加的影响,这可能使细胞对抗生素更具耐受性。这种微流控平台可用于研究任何微生物,并动态监测其对不同条件和刺激的反应。