Suppr超能文献

基于采样努力和物种生态位的存在-仅有数据生态位模型的偏差:背景点选择的教训。

Bias in presence-only niche models related to sampling effort and species niches: Lessons for background point selection.

机构信息

INRIA Sophia-Antipolis - ZENITH team, Montpellier, France.

INRAE, UMR AMAP, Montpellier, France.

出版信息

PLoS One. 2020 May 20;15(5):e0232078. doi: 10.1371/journal.pone.0232078. eCollection 2020.

Abstract

The use of naturalist mobile applications have dramatically increased during last years, and provide huge amounts of accurately geolocated species presences records. Integrating this novel type of data in species distribution models (SDMs) raises specific methodological questions. Presence-only SDM methods require background points, which should be consistent with sampling effort across the environmental space to avoid bias. A standard approach is to use uniformly distributed background points (UB). When multiple species are sampled, another approach is to use a set of occurrences from a Target-Group of species as background points (TGOB). We here investigate estimation biases when applying TGOB and UB to opportunistic naturalist occurrences. We modelled species occurrences and observation process as a thinned Poisson point process, and express asymptotic likelihoods of UB and TGOB as a divergence between environmental densities, in order to characterize biases in species niche estimation. To illustrate our results, we simulated species occurrences with different types of niche (specialist/generalist, typical/marginal), sampling effort and TG species density. We conclude that none of the methods are immune to estimation bias, although the pitfalls are different: For UB, the niche estimate fits tends towards the product of niche and sampling densities. TGOB is unaffected by heterogeneous sampling effort, and even unbiased if the cumulated density of the TG species is constant. If it is concentrated, the estimate deviates from the range of TG density. The user must select the group of species to ensure that they are jointly abundant over the broadest environmental sub-area.

摘要

近年来,自然主义者移动应用程序的使用量急剧增加,提供了大量准确的地理位置物种存在记录。将这种新型数据整合到物种分布模型(SDM)中会引发特定的方法学问题。仅存在的 SDM 方法需要背景点,这些背景点应与环境空间中的采样努力保持一致,以避免偏差。一种标准方法是使用均匀分布的背景点(UB)。当对多个物种进行采样时,另一种方法是使用一组来自目标物种组的发生作为背景点(TGOB)。我们在这里研究了将 TGOB 和 UB 应用于机会主义自然主义者发生时的估计偏差。我们将物种发生和观测过程建模为稀疏泊松点过程,并将 UB 和 TGOB 的渐近似然表示为环境密度之间的差异,以便描述物种生态位估计中的偏差。为了说明我们的结果,我们使用不同类型的生态位(专业/通用,典型/边缘)、采样努力和 TG 物种密度模拟了物种发生。我们得出的结论是,没有一种方法可以免受估计偏差的影响,尽管陷阱不同:对于 UB,生态位估计值趋于生态位和采样密度的乘积。TGOB 不受异质采样努力的影响,如果 TG 物种的累积密度保持不变,则不受影响。如果它集中,估计值会偏离 TG 密度的范围。用户必须选择一组物种,以确保它们在最广泛的环境子区域内共同丰富。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb47/7239389/28fe4370db1a/pone.0232078.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验