Suppr超能文献

迈向基于多变量生物标志物的自闭症谱系障碍诊断:综述及最新进展讨论。

Towards a Multivariate Biomarker-Based Diagnosis of Autism Spectrum Disorder: Review and Discussion of Recent Advancements.

机构信息

Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY.

Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY.

出版信息

Semin Pediatr Neurol. 2020 Jul;34:100803. doi: 10.1016/j.spen.2020.100803. Epub 2020 Mar 5.

Abstract

An ever-evolving understanding of autism spectrum disorder (ASD) pathophysiology necessitates that diagnostic standards also evolve from being observation-based to include quantifiable clinical measurements. The multisystem nature of ASD motivates the use of multivariate methods of statistical analysis over common univariate approaches for discovering clinical biomarkers relevant to this goal. In addition to characterization of important behavioral patterns for improving current diagnostic instruments, multivariate analyses to date have allowed for thorough investigation of neuroimaging-based, genetic, and metabolic abnormalities in individuals with ASD. This review highlights current research using multivariate statistical analyses to quantify the value of these behavioral and physiological markers for ASD diagnosis. A detailed discussion of a blood-based diagnostic test for ASD using specific metabolite concentrations is also provided. The advancement of ASD biomarker research promises to provide earlier and more accurate diagnoses of the disorder.

摘要

对自闭症谱系障碍 (ASD) 病理生理学的认识在不断发展,这就要求诊断标准也从基于观察的方法发展为包括可量化的临床测量方法。ASD 的多系统性质促使人们使用多元统计分析方法而不是常用的单变量方法来发现与这一目标相关的临床生物标志物。除了对重要行为模式进行特征描述以改进当前的诊断工具外,多元分析迄今为止还允许对自闭症患者的神经影像学、遗传学和代谢异常进行全面研究。这篇综述重点介绍了目前使用多元统计分析来量化这些行为和生理标志物对 ASD 诊断价值的研究。还详细讨论了一种使用特定代谢物浓度的基于血液的 ASD 诊断测试。ASD 生物标志物研究的进展有望为该疾病提供更早、更准确的诊断。

相似文献

1
Towards a Multivariate Biomarker-Based Diagnosis of Autism Spectrum Disorder: Review and Discussion of Recent Advancements.
Semin Pediatr Neurol. 2020 Jul;34:100803. doi: 10.1016/j.spen.2020.100803. Epub 2020 Mar 5.
4
The Emerging Clinical Neuroscience of Autism Spectrum Disorder: A Review.
JAMA Psychiatry. 2018 May 1;75(5):514-523. doi: 10.1001/jamapsychiatry.2017.4685.
5
Metabolomics as a tool for discovery of biomarkers of autism spectrum disorder in the blood plasma of children.
PLoS One. 2014 Nov 7;9(11):e112445. doi: 10.1371/journal.pone.0112445. eCollection 2014.
8
Diagnostic model generated by MRI-derived brain features in toddlers with autism spectrum disorder.
Autism Res. 2017 Apr;10(4):620-630. doi: 10.1002/aur.1711. Epub 2016 Nov 22.
10
Neuroimaging genetics approaches to identify new biomarkers for the early diagnosis of autism spectrum disorder.
Mol Psychiatry. 2023 Dec;28(12):4995-5008. doi: 10.1038/s41380-023-02060-9. Epub 2023 Apr 17.

引用本文的文献

1
Pre-autism: Advancing early identification and intervention in autism.
World J Clin Cases. 2024 Dec 6;12(34):6748-6753. doi: 10.12998/wjcc.v12.i34.6748.
5
Early Diagnosis of Autism Spectrum Disorder: A Review and Analysis of the Risks and Benefits.
Cureus. 2023 Aug 9;15(8):e43226. doi: 10.7759/cureus.43226. eCollection 2023 Aug.
6
Prosodic signatures of ASD severity and developmental delay in preschoolers.
NPJ Digit Med. 2023 May 29;6(1):99. doi: 10.1038/s41746-023-00845-4.
7
Towards the Development of a Diagnostic Test for Autism Spectrum Disorder: Big Data Meets Metabolomics.
Can J Chem Eng. 2023 Jan;101(1):9-17. doi: 10.1002/cjce.24594. Epub 2022 Aug 10.
8
Editorial: The role of epigenetics in neuropsychiatric disorders.
Front Mol Neurosci. 2022 Jul 25;15:985023. doi: 10.3389/fnmol.2022.985023. eCollection 2022.

本文引用的文献

1
Maternal metabolic profile predicts high or low risk of an autism pregnancy outcome.
Res Autism Spectr Disord. 2018 Dec;56:72-82. doi: 10.1016/j.rasd.2018.09.003. Epub 2018 Sep 19.
2
Changing conceptualizations of regression: What prospective studies reveal about the onset of autism spectrum disorder.
Neurosci Biobehav Rev. 2019 May;100:296-304. doi: 10.1016/j.neubiorev.2019.03.012. Epub 2019 Mar 15.
4
Neurodevelopmental heterogeneity and computational approaches for understanding autism.
Transl Psychiatry. 2019 Feb 4;9(1):63. doi: 10.1038/s41398-019-0390-0.
6
Big data approaches to decomposing heterogeneity across the autism spectrum.
Mol Psychiatry. 2019 Oct;24(10):1435-1450. doi: 10.1038/s41380-018-0321-0. Epub 2019 Jan 7.
7
A Subset of Patients With Autism Spectrum Disorders Show a Distinctive Metabolic Profile by Dried Blood Spot Analyses.
Front Psychiatry. 2018 Dec 7;9:636. doi: 10.3389/fpsyt.2018.00636. eCollection 2018.
8
Infant motor skill predicts later expressive language and autism spectrum disorder diagnosis.
Infant Behav Dev. 2019 Feb;54:37-47. doi: 10.1016/j.infbeh.2018.11.003. Epub 2018 Dec 14.
9
Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders.
Front Cell Neurosci. 2018 Nov 13;12:405. doi: 10.3389/fncel.2018.00405. eCollection 2018.
10
Mobile detection of autism through machine learning on home video: A development and prospective validation study.
PLoS Med. 2018 Nov 27;15(11):e1002705. doi: 10.1371/journal.pmed.1002705. eCollection 2018 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验