Géographie-Cités, CNRS & Université Paris 1 Panthéon-Sorbonne, 75006 Paris, France
Proc Natl Acad Sci U S A. 2020 Jun 9;117(23):12719-12728. doi: 10.1073/pnas.1906670117. Epub 2020 May 26.
Maritime transport accounts for over 80% of the world trade volume and is the backbone of the global economy. Global supply chains create a complex network of trade flows. The structure of this network impacts not only the socioeconomic development of the concerned regions but also their ecosystems. The movements of ships are a considerable source of CO emissions and contribute to climate change. In the wake of the announced development of Arctic shipping, the need to understand the behavior of the maritime trade network and to predict future trade flows becomes pressing. We use a unique database of daily movements of the world fleet over the period 1977-2008 and apply machine learning techniques on network data to develop models for predicting the opening of new shipping lines and for forecasting trade volume on links. We find that the evolution of this system is governed by a simple rule from network science, relying on the number of common neighbors between pairs of ports. This finding is consistent over all three decades of temporal data. We further confirm it with a natural experiment, involving traffic redirection from the port of Kobe after the 1995 earthquake. Our forecasting method enables researchers and industry to easily model effects of potential future scenarios at the level of ports, regions, and the world. Our results also indicate that maritime trade flows follow a form of random walk on the underlying network structure of sea connections, highlighting its pivotal role in the development of maritime trade.
海运占全球贸易量的 80%以上,是全球经济的支柱。全球供应链构成了一个复杂的贸易流网络。这个网络的结构不仅影响到相关地区的社会经济发展,也影响到它们的生态系统。船舶的移动是 CO2 排放的一个重要来源,也是气候变化的原因之一。随着北极航运的发展,有必要了解海上贸易网络的行为,并预测未来的贸易流量。我们使用了一个独特的全球船队每日移动数据库,在网络数据上应用机器学习技术,开发了用于预测新航线开通和预测链路贸易量的模型。我们发现,这个系统的演化是由网络科学中的一个简单规则所决定的,这个规则依赖于港口之间对的共同邻居的数量。这一发现适用于所有三个十年的时间数据。我们还通过涉及 1995 年地震后神户港交通改道的自然实验进一步证实了这一发现。我们的预测方法使研究人员和行业能够轻松地在港口、地区和全球层面模拟潜在未来情景的影响。我们的研究结果还表明,海上贸易流量在海联系的基础网络结构上遵循一种随机游走的形式,突出了其在海上贸易发展中的关键作用。