Suppr超能文献

基于 MRI 的放射组学列线图预测原发性直肠癌患者的同步肝转移。

MRI-based radiomics nomogram to predict synchronous liver metastasis in primary rectal cancer patients.

机构信息

Department of Radiology, Changhai Hospital, Shanghai, China.

Huiying Medical Technology Co., Ltd, Beijing, China.

出版信息

Cancer Med. 2020 Jul;9(14):5155-5163. doi: 10.1002/cam4.3185. Epub 2020 May 31.

Abstract

At the time of diagnosis, approximately 15%-20% of patients with rectal cancer (RC) presented synchronous liver metastasis (SLM), which is the most common cause of death in patients with RC. Therefore, preoperative, noninvasive, and accurate prediction of SLM is crucial for personalized treatment strategies. Recently, radiomics has been considered as an advanced image analysis method to evaluate the neoplastic heterogeneity with respect to diagnosis of the tumor and prediction of prognosis. In this study, a total of 1409 radiomics features were extracted for each volume of interest (VOI) from high-resolution T2WI images of the primary RC. Subsequently, five optimal radiomics features were selected based on the training set using the least absolute shrinkage and selection operator (LASSO) method to construct the radiomics signature. In addition, radiomics signature combined with carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) was included in the multifactor logistic regression to construct the nomogram model. It showed an optimal predictive performance in the validation set as compared to that in the radiomics model. The favorable calibration of the radiomics nomogram showed a nonsignificant Hosmer-Lemeshow test statistic (P > .05). The decision curve analysis (DCA) showed that the radiomics nomogram is clinically superior to the radiomics model. Therefore, the nomogram amalgamating the radiomics signature and clinical risk factors serve as an effective quantitative approach to predict the SLM of primary RC.

摘要

在诊断时,约 15%-20%的直肠癌 (RC) 患者出现同步肝转移 (SLM),这是 RC 患者死亡的最常见原因。因此,术前、非侵入性和准确预测 SLM 对于制定个性化治疗策略至关重要。最近,放射组学被认为是一种先进的图像分析方法,用于评估肿瘤的异型性以及预测预后。在这项研究中,从原发性 RC 的高分辨率 T2WI 图像中为每个感兴趣区 (VOI) 提取了总共 1409 个放射组学特征。随后,使用最小绝对值收缩和选择算子 (LASSO) 方法从训练集中选择了 5 个最佳放射组学特征,以构建放射组学特征。此外,放射组学特征与癌胚抗原 (CEA) 和糖链抗原 19-9 (CA19-9) 结合纳入多因素逻辑回归,以构建列线图模型。与放射组学模型相比,验证集显示出最佳的预测性能。放射组学列线图的良好校准表明 Hosmer-Lemeshow 检验统计量无显著性差异 (P>.05)。决策曲线分析 (DCA) 表明,放射组学列线图在临床上优于放射组学模型。因此,融合放射组学特征和临床危险因素的列线图是预测原发性 RC 的 SLM 的有效定量方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d4d/7367643/d66d5b0a5374/CAM4-9-5155-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验