Protein Research Center, Shahid Beheshti University, Tehran, Iran.
Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran.
Drug Dev Ind Pharm. 2020 Jul;46(7):1035-1062. doi: 10.1080/03639045.2020.1776321. Epub 2020 Jun 16.
The synthetic analogue to biogenic apatite, hydroxyapatite (HA) has a number of physicochemical properties that make it an attractive candidate for diagnosis, treatment of disease and augmentation of biological tissues. Here we describe some of the recent studies on HA, which may provide bases for a number of new medical applications. The content of this review is divided to different medical application modes utilizing HA, including tissue engineering, medical implants, controlled drug delivery, gene therapies, cancer therapies and bioimaging. A number of advantages of HA over other biomaterials emerge from this discourse, including (i) biocompatibility, (ii) bioactivity, (iii) relatively simple synthesis protocols for the fabrication of nanoparticles with specific sizes and shapes, (iv) smart response to environmental stimuli, (v) facile functionalization and surface modification through noncovalent interactions, and (vi) the capacity for being simultaneously loaded with a wide range of therapeutic agents and switched to bioimaging modalities for uses in theranostics. A special section is dedicated to analysis of the safety of particulate HA as a component of parenterally administrable medications. It is concluded that despite the fact that many benefits come with the usage of HA, its deficiencies and potential side effects must be addressed before the translation to the clinical domain is pursued. Although HA has been known in the biomaterials world as the exemplar of safety, this safety proves to be the function of size, morphology, surface ligands and other structural and compositional parameters defining the particles. For this reason, each HA, especially when it comes in a novel structural form, must be treated anew from the safety research angle before being allowed to enter the clinical stage.
人工合成的生物磷灰石类似物羟基磷灰石 (HA) 具有许多理化性质,使其成为诊断、治疗疾病和增强生物组织的有吸引力的候选物。在这里,我们描述了一些关于 HA 的最新研究,这些研究可能为许多新的医学应用提供基础。本综述的内容分为利用 HA 的不同医学应用模式,包括组织工程、医学植入物、药物控释、基因治疗、癌症治疗和生物成像。从这篇论文中可以看出,HA 相对于其他生物材料具有许多优势,包括 (i) 生物相容性、(ii) 生物活性、(iii) 用于制备具有特定尺寸和形状的纳米粒子的相对简单的合成方案、(iv) 对环境刺激的智能响应、(v) 通过非共价相互作用进行简便的功能化和表面修饰,以及 (vi) 同时加载广泛的治疗剂并转换为用于治疗学的生物成像模式的能力。专门有一部分用于分析作为可肠胃外给药药物成分的颗粒状 HA 的安全性。结论是,尽管 HA 的使用带来了许多好处,但在将其转化为临床领域之前,必须解决其缺陷和潜在的副作用问题。尽管 HA 在生物材料领域被认为是安全性的典范,但这种安全性是由决定颗粒的尺寸、形态、表面配体和其他结构和组成参数的功能。因此,在允许进入临床阶段之前,每种 HA,特别是当其采用新颖的结构形式时,都必须从安全性研究的角度进行新的处理。