Kelwick Richard J R, Webb Alexander J, Freemont Paul S
Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom.
The London Biofoundry, Imperial College Translation & Innovation Hub, London, United Kingdom.
Front Bioeng Biotechnol. 2020 May 12;8:399. doi: 10.3389/fbioe.2020.00399. eCollection 2020.
Advancements in cell-free synthetic biology are enabling innovations in sustainable biomanufacturing, that may ultimately shift the global manufacturing paradigm toward localized and ecologically harmonized production processes. Cell-free synthetic biology strategies have been developed for the bioproduction of fine chemicals, biofuels and biological materials. Cell-free workflows typically utilize combinations of purified enzymes, cell extracts for biotransformation or cell-free protein synthesis reactions, to assemble and characterize biosynthetic pathways. Importantly, cell-free reactions can combine the advantages of chemical engineering with metabolic engineering, through the direct addition of co-factors, substrates and chemicals -including those that are cytotoxic. Cell-free synthetic biology is also amenable to automatable design cycles through which an array of biological materials and their underpinning biosynthetic pathways can be tested and optimized in parallel. Whilst challenges still remain, recent convergences between the materials sciences and these advancements in cell-free synthetic biology enable new frontiers for materials research.
无细胞合成生物学的进展正在推动可持续生物制造领域的创新,这最终可能会使全球制造业模式朝着本地化和生态协调的生产过程转变。已经开发出无细胞合成生物学策略用于精细化学品、生物燃料和生物材料的生物生产。无细胞工作流程通常利用纯化酶、用于生物转化的细胞提取物或无细胞蛋白质合成反应的组合,来组装和表征生物合成途径。重要的是,无细胞反应可以通过直接添加辅因子、底物和化学物质(包括那些具有细胞毒性的物质),将化学工程的优势与代谢工程相结合。无细胞合成生物学也适用于可自动化的设计循环,通过该循环可以并行测试和优化一系列生物材料及其基础生物合成途径。尽管挑战依然存在,但材料科学与这些无细胞合成生物学进展之间的最新融合为材料研究开辟了新的前沿领域。