Suppr超能文献

对深海中的泉古菌的新认识:它们的新陈代谢和潜在的适应机制。

Novel insights into the Thaumarchaeota in the deepest oceans: their metabolism and potential adaptation mechanisms.

机构信息

College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.

Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.

出版信息

Microbiome. 2020 Jun 1;8(1):78. doi: 10.1186/s40168-020-00849-2.

Abstract

BACKGROUND

Marine Group I (MGI) Thaumarchaeota, which play key roles in the global biogeochemical cycling of nitrogen and carbon (ammonia oxidizers), thrive in the aphotic deep sea with massive populations. Recent studies have revealed that MGI Thaumarchaeota were present in the deepest part of oceans-the hadal zone (depth > 6000 m, consisting almost entirely of trenches), with the predominant phylotype being distinct from that in the "shallower" deep sea. However, little is known about the metabolism and distribution of these ammonia oxidizers in the hadal water.

RESULTS

In this study, metagenomic data were obtained from 0-10,500 m deep seawater samples from the Mariana Trench. The distribution patterns of Thaumarchaeota derived from metagenomics and 16S rRNA gene sequencing were in line with that reported in previous studies: abundance of Thaumarchaeota peaked in bathypelagic zone (depth 1000-4000 m) and the predominant clade shifted in the hadal zone. Several metagenome-assembled thaumarchaeotal genomes were recovered, including a near-complete one representing the dominant hadal phylotype of MGI. Using comparative genomics, we predict that unexpected genes involved in bioenergetics, including two distinct ATP synthase genes (predicted to be coupled with H and Na respectively), and genes horizontally transferred from other extremophiles, such as those encoding putative di-myo-inositol-phosphate (DIP) synthases, might significantly contribute to the success of this hadal clade under the extreme condition. We also found that hadal MGI have the genetic potential to import a far higher range of organic compounds than their shallower water counterparts. Despite this trait, hadal MDI ammonia oxidation and carbon fixation genes are highly transcribed providing evidence they are likely autotrophic, contributing to the primary production in the aphotic deep sea.

CONCLUSIONS

Our study reveals potentially novel adaptation mechanisms of deep-sea thaumarchaeotal clades and suggests key functions of deep-sea Thaumarchaeota in carbon and nitrogen cycling. Video Abstract.

摘要

背景

海洋 I 组(MGI)古菌在全球氮碳生物地球化学循环中发挥着关键作用,它们在没有阳光的深海中大量繁殖。最近的研究表明,MGI 古菌存在于海洋的最深处——海沟(深度>6000 米,几乎完全由海沟组成),主要的菌群与“较浅”深海中的菌群不同。然而,人们对这些氨氧化古菌在深海水中的代谢和分布知之甚少。

结果

本研究从马里亚纳海沟 0-10500 米深的海水样本中获得了宏基因组数据。宏基因组和 16S rRNA 基因测序得出的古菌分布模式与之前的研究报告一致:古菌丰度在深海带(深度 1000-4000 米)达到峰值,在海沟区主要菌群发生了转变。从宏基因组中回收了几个古菌组装基因组,包括一个代表 MGI 主要海沟菌群的近乎完整的基因组。通过比较基因组学,我们预测了一些意想不到的与生物能量学相关的基因,包括两个不同的 ATP 合酶基因(分别预测与 H 和 Na 偶联),以及从其他极端微生物水平转移而来的基因,如编码可能的二肌醇-磷酸(DIP)合酶的基因,这些基因可能对这个海沟菌群在极端条件下的成功起到了重要作用。我们还发现,海沟 MGI 具有比浅水区对应物更高范围的有机化合物的遗传潜力。尽管有这种特性,但海沟 MDI 氨氧化和碳固定基因的转录水平很高,这表明它们可能是自养的,为无光深海的初级生产做出了贡献。

结论

本研究揭示了深海古菌类群潜在的新型适应机制,并提出了深海古菌在碳氮循环中的关键功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验