Suppr超能文献

利用前瞻性时空分析监测塞尔希培州的首批 COVID-19 病例:空间分布及其公共卫生意义。

Surveillance of the first cases of COVID-19 in Sergipe using a prospective spatiotemporal analysis: the spatial dispersion and its public health implications.

机构信息

Programa de Pós-Graduação em Enfermagem, Universidade Federal de Sergipe, Aracaju, SE, Brasil.

Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, Aracaju, SE, Brasil.

出版信息

Rev Soc Bras Med Trop. 2020;53:e20200287. doi: 10.1590/0037-8682-0287-2020. Epub 2020 Jun 1.

Abstract

INTRODUCTION

Coronavirus disease 2019 (COVID-19) has become a global public health emergency with lethality ranging from 1% to 5%. This study aimed to identify active high-risk transmission clusters of COVID-19 in Sergipe.

METHODS

We performed a prospective space-time analysis using confirmed cases of COVID-19 during the first 7 weeks of the outbreak in Sergipe.

RESULTS

The prospective space-time statistic detected "active" and emerging spatio-temporal clusters comprising six municipalities in the south-central region of the state.

CONCLUSIONS

The Geographic Information System (GIS) associated with spatio-temporal scan statistics can provide timely support for surveillance and assist in decision-making.

摘要

简介

2019 年冠状病毒病(COVID-19)已成为全球公共卫生紧急事件,其致死率在 1%至 5%之间。本研究旨在确定塞尔希培州 COVID-19 的活跃高危传播集群。

方法

我们对塞尔希培州疫情爆发的前 7 周内确诊的 COVID-19 病例进行了前瞻性时空分析。

结果

前瞻性时空统计检测到由该州中南部六个城市组成的“活跃”和新兴时空集群。

结论

地理信息系统(GIS)与时空扫描统计相结合,可以为监测提供及时支持,并有助于决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7296/7269533/bb40a78777e0/1678-9849-rsbmt-53-20200287-gf1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验