Suppr超能文献

芬兰赫尔辛基 COVID-19(SARS-CoV-2)感染的时空聚集模式及社会人口学决定因素。

Spatiotemporal clustering patterns and sociodemographic determinants of COVID-19 (SARS-CoV-2) infections in Helsinki, Finland.

机构信息

Earth Change Observation Laboratory, Department of Geosciences and Geography, P.O. Box 64, FI-00014 University of Helsinki, Helsinki, Finland; Department of Virology, Haartmaninkatu 3, P.O. Box 21, FI-00014 University of Helsinki, Helsinki, Finland.

Earth Change Observation Laboratory, Department of Geosciences and Geography, P.O. Box 64, FI-00014 University of Helsinki, Helsinki, Finland; Department of Virology, Haartmaninkatu 3, P.O. Box 21, FI-00014 University of Helsinki, Helsinki, Finland; Department of Veterinary Biosciences, Agnes Sjöberginkatu 2, P.O. Box 66, FI-00014 University of Helsinki, Helsinki, Finland.

出版信息

Spat Spatiotemporal Epidemiol. 2022 Jun;41:100493. doi: 10.1016/j.sste.2022.100493. Epub 2022 Feb 5.

Abstract

This study aims to elucidate the variations in spatiotemporal patterns and sociodemographic determinants of SARS-CoV-2 infections in Helsinki, Finland. Global and local spatial autocorrelation were inspected with Moran's I and LISA statistics, and Getis-Ord Gi* statistics was used to identify the hot spot areas. Space-time statistics were used to detect clusters of high relative risk and regression models were implemented to explain sociodemographic determinants for the clusters. The findings revealed the presence of spatial autocorrelation and clustering of COVID-19 cases. High-high clusters and high relative risk areas emerged primarily in Helsinki's eastern neighborhoods, which are socioeconomically vulnerable, with a few exceptions revealing local outbreaks in other areas. The variation in COVID-19 rates was largely explained by median income and the number of foreign citizens in the population. Furthermore, the use of multiple spatiotemporal analysis methods are recommended to gain deeper insights into the complex spatiotemporal clustering patterns and sociodemographic determinants of the COVID-19 cases.

摘要

本研究旨在阐明芬兰赫尔辛基 SARS-CoV-2 感染的时空模式变化和社会人口学决定因素。使用 Moran's I 和 LISA 统计量检查全局和局部空间自相关,使用 Getis-Ord Gi* 统计量识别热点区域。使用时空统计检测高相对风险的聚类,并实施回归模型来解释聚类的社会人口学决定因素。研究结果表明 COVID-19 病例存在空间自相关和聚类。高-高聚类和高相对风险区域主要出现在赫尔辛基东部的社会经济脆弱社区,也有一些例外情况表明其他地区存在局部暴发。COVID-19 发病率的变化主要由人口的中位数收入和外国公民人数解释。此外,建议使用多种时空分析方法深入了解 COVID-19 病例的复杂时空聚类模式和社会人口学决定因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d40b/8817446/ef6d6715d9c2/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验