Patel Akhil, Zaky Samer H, Schoedel Karen, Li Hongshuai, Sant Vinayak, Beniash Elia, Sfeir Charles, Stolz Donna B, Sant Shilpa
Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261.
Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261.
Acta Biomater. 2020 Aug;112:262-273. doi: 10.1016/j.actbio.2020.05.034. Epub 2020 Jun 1.
Bone loss due to trauma and tumors remains a serious clinical concern. Due to limited availability and disease transmission risk with autografts and allografts, calcium phosphate bone fillers and growth factor-based substitute bone grafts are currently used in the clinic. However, substitute grafts lack bone regeneration potential when used without growth factors. When used along with the added growth factors, they lead to unwanted side effects such as uncontrolled bone growth. Collagen-based hydrogel grafts available on the market fail to provide structural guidance to native cells due to high water-solubility and faster degradation. To overcome these limitations, we employed bioinspired material design and fabricated three different hydrogels with structural features similar to native collagen at multiple length-scales. These hydrogels fabricated using polyionic complexation of oppositely charged natural polysaccharides exhibited multi-scale architecture mimicking nanoscale banding pattern, and microscale fibrous structure of native collagen. All three hydrogels promoted biomimetic apatite-like mineral deposition in vitro elucidating crystalline structure on the surface while amorphous calcium phosphate inside the hydrogels resulting in mineral-hydrogel nanocomposites. When evaluated in a non-load bearing critical size mouse calvaria defect model, chitosan - kappa carrageenan mineral-hydrogel nanocomposites enhanced bone regeneration without added growth factors compared to empty defect as well as widely used marketed collagen scaffolds. Histological assessment of the regenerated bone revealed improved healing and tissue remodeling with mineral-hydrogel nanocomposites. Overall, these collagen-inspired mineral-hydrogel nanocomposites showed multi-scale hierarchical structure and can potentially serve as promising bioactive hydrogel to promote bone regeneration. STATEMENT OF SIGNIFICANCE: Hydrogels, especially collagen, are widely used in bone tissue engineering. Collagen fibrils play arguably the most important role during natural bone development. Its multi-scale hierarchical structure to form fibers from fibrils and electrostatic charges enable mineral sequestration, nucleation, and growth. However, bulk collagen hydrogels exhibit limited bone regeneration and are mostly used as carriers for highly potent growth factors such as bone morphogenic protein-2, which increase the risk of uncontrolled bone growth. Thus, there is an unmet clinical need for a collagen-inspired biomaterial that can recreate structural hierarchy, mineral sequestration ability, and stimulate recruitment of host progenitor cells to facilitate bone regeneration. Here, we propose collagen-inspired bioactive mineral-hydrogel nanocomposites as a growth factor-free approach to guide and enhance bone regeneration.
创伤和肿瘤导致的骨质流失仍然是一个严重的临床问题。由于自体骨移植和异体骨移植的可用性有限以及疾病传播风险,磷酸钙骨填充剂和基于生长因子的替代骨移植目前在临床上使用。然而,替代移植在没有生长因子的情况下使用时缺乏骨再生潜力。当与添加的生长因子一起使用时,它们会导致不必要的副作用,如不受控制的骨生长。市场上现有的基于胶原蛋白的水凝胶移植由于高水溶性和更快的降解而无法为天然细胞提供结构指导。为了克服这些限制,我们采用了仿生材料设计,并制备了三种不同的水凝胶,其结构特征在多个长度尺度上与天然胶原蛋白相似。这些通过带相反电荷的天然多糖的聚离子络合制备的水凝胶表现出模仿纳米级条纹图案和天然胶原蛋白微尺度纤维结构的多尺度结构。所有三种水凝胶在体外均促进了仿生磷灰石样矿物沉积,阐明了表面的晶体结构,而水凝胶内部为无定形磷酸钙,从而形成矿物 - 水凝胶纳米复合材料。当在非承重临界尺寸小鼠颅骨缺损模型中进行评估时,与空白缺损以及广泛使用的市售胶原蛋白支架相比,壳聚糖 - κ - 卡拉胶矿物 - 水凝胶纳米复合材料在不添加生长因子的情况下增强了骨再生。对再生骨的组织学评估显示,矿物 - 水凝胶纳米复合材料改善了愈合和组织重塑。总体而言,这些受胶原蛋白启发的矿物 - 水凝胶纳米复合材料显示出多尺度层次结构,并有可能作为有前途的生物活性水凝胶来促进骨再生。重要性声明:水凝胶,尤其是胶原蛋白,在骨组织工程中被广泛使用。胶原纤维在天然骨发育过程中可能起着最重要的作用。其从原纤维形成纤维的多尺度层次结构和静电荷能够实现矿物螯合、成核和生长。然而,块状胶原蛋白水凝胶的骨再生能力有限,并且大多用作骨形态发生蛋白 - 2等高效生长因子的载体,这增加了不受控制的骨生长风险。因此,临床上迫切需要一种受胶原蛋白启发的生物材料,它能够重现结构层次、矿物螯合能力,并刺激宿主祖细胞的募集以促进骨再生。在这里,我们提出受胶原蛋白启发的生物活性矿物 - 水凝胶纳米复合材料作为一种无生长因子的方法来引导和增强骨再生。